PAT 甲级测试题目 -- 1003 Emergency

本文深入探讨Dijkstra算法的优化技巧,包括优先队列和前向星的应用,解决求最短路径数量及路径上权值最大问题。通过实战案例,讲解如何避免常见坑点,实现高效算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接
题目大意:你扮演救生队长,在某个城市发生灾难时中召集救生队对该城市进行援救。
给定各个城市之间的通路以及通路的路程,灾难发生时你所在的城市,灾难发生时的城市,各个城市的救生队数目。求出你从你所在的城市出发,到救灾城市的最短路的数量,以及这些最短路中所能召集到最多的救灾队数目。
其实就是求图最短路径的数量以及最短路径中,结点累加权值最大的最短路径。
博主在写的时候,初期使用的是未优化的 Dijkstra 算法,但是 PAT 指出段错误,博主误以为代码时间复杂度较高,于是学习了一下优先队列前向星,对 Dijkstra 算法进行了堆优化,有心的同学可以试试,在 这里(洛谷 -- P3371 【模板】单源最短路径(弱化版)) 可以测试堆优化后的 Dijkstra 算法。下面是该算法的代码

#include<iostream>
#include<vector> // 创建优先队列所需
#include<queue> // 创建优先队列所需
#include<cstdio> // 初始化数组所需
#include<cstring> // memset 所需
using namespace std;
// 数据边界
const int maxn = 10010, maxm = 500010, max_int = 2147483647;
// 记录源点到各结点之间的距离
int dist[maxn];
// 记录该结点是否被访问过
bool tags[maxn];
// 构建前向星 分别为:记录存储当前边的位置、记录边的权值、记录有向边所连接的下一个节点、记录当前边的前一条边所存储的位置、记录当前是第几条边
int head[maxm], w[maxm], to[maxm], nxt[maxm], cnt = 0;
// 城市数目、城市之间通路数、所在城市、目标城市
int n, m, s, a;

// 构建优先队列用到的方法
struct cmp {
    bool operator()(int x, int y) 
    {
        return dist[x] > dist[y]; // dist[x] > dist[y] 为小顶堆,dist[x] < dist[y] 为大顶堆
    }
};
// 构建前向星
void front_edge(int nx, int mx, int wx) {
    to[cnt] = mx;
    w[cnt] = wx;    
    nxt[cnt] = head[nx];
    head[nx] = cnt++;
    return;
}
// Dijikstra 算法
void dijkstra(int s) {
    // 创建优先队列
    priority_queue<int, vector<int>, cmp> q;
    while (!q.empty())
        q.pop();
    dist[s] = 0;
    q.push(s);
    while (!q.empty()) {
        int x = q.top();
        q.pop();
        if (!tags[x]) {
            tags[x] = true;
            for (int i = head[x]; i != -1; i = nxt[i]) {
                int y = to[i];
                dist[y] = min(dist[y], dist[x] + w[i]);
                q.push(y);
            }
        }
    }
    return;
}

int main() {
    cin >> n >> m >> s;

    memset(head, -1, sizeof(head));
    memset(tags, false, sizeof(tags));

    for (int i = 1; i <= n; i++) 
        dist[i] = max_int;
    
    for (int i = 1; i <= m; i++) {
        int nx, mx, wx;
        cin >> nx >> mx >> wx;
        front_edge(nx, mx, wx);
    }

    dijkstra(s);

    for (int i = 1; i <= n; i++) 
        cout << dist[i] << " ";
    }
    return 0;
}

坑点1

由于题目中需要求解最短边的数量,因此要对 Dijkstra 算法进行改写
通过对前向星以及优先队列的学习之后,我们可以发现,在每次使用前向星寻边的时候,可以使用一个数组,记录下来源点到该结点的最短距离,这个最短距离通过判断 dist[y] 是否变更进行改变。也就是修改 Dijkstra 函数中的代码如下

// 根据题目创建的全局变量
const int maxn = 600;
// 记录能够召集到的最多队伍数目
int nodeMaxTeam[maxn];
// min_edges[maxn] 需要在 main() 函数中初始化为全1,因为假定源点到各个结点的路径起始只有一条
int min_edges[maxn];
// 记录个城市所拥有的队伍数
int Teams[maxn];

void dijkstra(int s) {
    // 创建优先队列
    priority_queue<int, vector<int>, cmp> q;
    while (!q.empty())
        q.pop();
    dist[s] = 0;
    q.push(s);
    while (!q.empty()) {
        int x = q.top();
        q.pop();
        if (!tags[x]) {
            tags[x] = true;
            for (int i = head[x]; i != -1; i = nxt[i]) {
                int y = to[i];
                // 被的修改代码
                temp = dist[y];
                dist[y] = min(dist[y], dist[x] + w[i]);
                if(dist[y] != temp)
                    min_edges[y]++;
                else
                    min_edges[y] = 1;   
                nodeMaxTeam[y] = max(nodeMaxTeam[y], nodeMaxTeam[x] + Teams[y]);            
                q.push(y);
            }
        }
    }
    return;
}

但是这里有一个反例

4 5 0 3
1 4 1 2
0 1 1
0 2 2
0 3 4
1 2 1
2 3 2

正确输出为
3 8
这里错误的原因是:我并没有考虑若从结点 1 到 结点 3 之间经过的 结点 2 和 结点 1 之间的通路有多条时,上述算法只能够找到两条。因此改进上述算法如下:

坑点2

// 根据题目创建的全局变量
const int maxn = 600;
// 记录能够召集到的最多队伍数目
int nodeMaxTeam[maxn];
// min_edges[maxn] 需要在 main() 函数中初始化为全1,因为假定源点到各个结点的路径起始只有一条
int min_edges[maxn];
// 记录个城市所拥有的队伍数
int Teams[maxn];

void dijkstra(int s) {
    priority_queue<int, vector<int>, cmp> q;
    while (!q.empty())
        q.pop();
    dist[s] = 0;
    nodeMaxTeam[s] = Teams[s];
    q.push(s);
    while (!q.empty()) {
        int x = q.top();
        q.pop();
        if (!tags[x]) {
            tags[x] = true;
            for (int i = head[x]; i != -1; i = nxt[i]) {
                int y = to[i];
                
                // 修改的代码块
                // 第一种情况 找到较短的边
                if (dist[y] > dist[x] + w[i]) { 
                    /*
                    由于该点到原点的最短边条数取决于上一个点(DP思想),因此若最短边发生变化,
                    该条数也应该随之更新为,所找到的最短距离对应的顶点 到源点的最短边数
                    */ 
                    min_edges[y] = min_edges[x];                
                    // 源点到目标点的路径变更,因此修改最大队伍数
                    nodeMaxTeam[y] = nodeMaxTeam[x] + Teams[y];
                    // 修改最短路径
                    dist[y] = dist[x] + w[i];
                    // 将 y 点入队列,以便对 y 所连接的所有边进行再次决策
                    q.push(y);
                }               
                else if (dist[y] == dist[x] + w[i]) { // 第二种情况 找到相等的边
                   // 当前的结点(y)的最短边数,加上源点到链接到当前结点的结点(x),其到源点的最短边数
                    min_edges[y] += min_edges[x];
                    // 若该路径召集的队伍比之前多,则更新召集到的最多队伍数目
                    if(nodeMaxTeam[y] < nodeMaxTeam[x] + Teams[y])
                        nodeMaxTeam[y] = nodeMaxTeam[x] + Teams[y];
                }
                // 修改的代码块
                
            }
        }
    }
    return;
}

然后,当我很开心的提交到 OJ 时,发现仍然有两条测试没过。经过思考之后想到,该题所采用的是无向图,因此通路是双向的,我所使用的 Dijkstra 算法是单向的,因此需要修改前向星,使得通路变成双向的,修改 main() 函数如下:

int main() {
    cin >> n >> m >> s >> a;
    memset(head, -1, sizeof(head));
    memset(tags, false, sizeof(tags));

    for (int i = 0; i < n; i++) {
        dist[i] = max_int;
        nodeMaxTeam[i] = 0;
        min_edges[i] = 1;
    }       

    for (int i = 0; i < n; i++)
        cin >> Teams[i];
        
    for (int i = 0; i < m; i++) {
        int nx, mx, wx;
        cin >> nx >> mx >> wx;
        front_edge(nx, mx, wx);
        // 增加的处理
        front_edge(mx, nx, wx);
        // 增加的处理
    }
    dijkstra(s);
    cout << min_edges[a] << " " << nodeMaxTeam[a];
    return 0;
}

完整代码

#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
#include<cstring>

using namespace std;
const int maxn = 600, maxm = 500010, max_int = 2147483647;                                          
int dist[maxn];
bool tags[maxn];

int head[maxm], w[maxm], to[maxm], nxt[maxm], cnt = 0;
int n, m, s, a;
int min_edges[maxn];

int Teams[maxn], nodeMaxTeam[maxn];

struct cmp {
    bool operator()(int x, int y) 
    {
        return dist[x] > dist[y];
    }
};

void front_edge(int nx, int mx, int wx) {
    to[cnt] = mx;
    w[cnt] = wx;    
    nxt[cnt] = head[nx];
    head[nx] = cnt++;
    return;
}

void dijkstra(int s) {
    priority_queue<int, vector<int>, cmp> q;
    while (!q.empty())
        q.pop();
    dist[s] = 0;
    nodeMaxTeam[s] = Teams[s];
    q.push(s);
    while (!q.empty()) {
        int x = q.top();
        q.pop();
        if (!tags[x]) {
            tags[x] = true;
            for (int i = head[x]; i != -1; i = nxt[i]) {
                int y = to[i];              
                if (dist[y] > dist[x] + w[i]) {
                    min_edges[y] = min_edges[x];                
                    nodeMaxTeam[y] = nodeMaxTeam[x] + Teams[y];
                    dist[y] = dist[x] + w[i];
                    q.push(y);
                }                   
                else if (dist[y] == dist[x] + w[i]) {
                    min_edges[y] += min_edges[x];
                    if(nodeMaxTeam[y] < nodeMaxTeam[x] + Teams[y])
                        nodeMaxTeam[y] = nodeMaxTeam[x] + Teams[y];
                }                                               
            }
        }
    }
    return;
}

int main() {
    cin >> n >> m >> s >> a;
    memset(head, -1, sizeof(head));
    memset(tags, false, sizeof(tags));
    memset(nodeMaxTeam, 0, sizeof(nodeMaxTeam));


    for (int i = 0; i < n; i++) {
        dist[i] = max_int;
        // 我试图用 memset 初始化 min_edges 数组时答案错误,以后填坑,可能是 memset 的问题
        min_edges[i] = 1;
    }       

    for (int i = 0; i < n; i++)
        cin >> Teams[i];
        
    for (int i = 0; i < m; i++) {
        int nx, mx, wx;
        cin >> nx >> mx >> wx;
        front_edge(nx, mx, wx);
        front_edge(mx, nx, wx);
    }
    dijkstra(s);
    cout << min_edges[a] << " " << nodeMaxTeam[a];
    return 0;
}

总结:

  1. 本体可以用 O (N2) 的未优化算法通过,较容易理解实现,因此同学们可以尝试一下
  2. 博主由于将 求最短路径数 错看成了 求最短路径长度 浪费了3天的时间 QAQ
  3. 上述的两个坑点希望大家一定注意

参考博客:
深度理解链式前向星
PAT 1003 Emergency (25)

转载于:https://www.cnblogs.com/Breathmint/p/10262540.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值