POJ 2738 Two Ends(记忆化)

本文分析了一种两人游戏“Two Ends”的策略问题,探讨当一方采用贪心策略时可能产生的最大损失。通过算法计算不同游戏情况下的最坏情况,并提供了一个具体的实现方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

In the two-player game "Two Ends", an even number of cards is laid out in a row. On each card, face up, is written a positive integer. Players take turns removing a card from either end of the row and placing the card in their pile. The player whose cards add up to the highest number wins the game. Now one strategy is to simply pick the card at the end that is the largest -- we'll call this the greedy strategy. However, this is not always optimal, as the following example shows: (The first player would win if she would first pick the 3 instead of the 4.) 
3 2 10 4 
You are to determine exactly how bad the greedy strategy is for different games when the second player uses it but the first player is free to use any strategy she wishes.

Input

There will be multiple test cases. Each test case will be contained on one line. Each line will start with an even integer n followed by n positive integers. A value of n = 0 indicates end of input. You may assume that n is no more than 1000. Furthermore, you may assume that the sum of the numbers in the list does not exceed 1,000,000.

Output

For each test case you should print one line of output of the form: 
In game m, the greedy strategy might lose by as many as p points. 
where m is the number of the game (starting at game 1) and p is the maximum possible difference between the first player's score and second player's score when the second player uses the greedy strategy. When employing the greedy strategy, always take the larger end. If there is a tie, remove the left end.

Sample Input

4 3 2 10 4
8 1 2 3 4 5 6 7 8
8 2 2 1 5 3 8 7 3
0

Sample Output

In game 1, the greedy strategy might lose by as many as 7 points.
In game 2, the greedy strategy might lose by as many as 4 points.
In game 3, the greedy strategy might lose by as many as 5 points.

Source

上次比赛写了个记忆化,这次算是跪了。參照:点击打开链接

题意:第二个人是贪心拿法,仅仅能从两端拿,问最大的差值。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<limits.h>
using namespace std;
const int maxn=1100;
int dp[maxn][maxn];
int a[maxn],n;
int solve(int x,int y)
{
   if(dp[x][y]!=-1)
      return dp[x][y];
   if(x+1==y)
      return dp[x][y]=abs(a[x]-a[y]);
   int sa,sb;
   if(a[x+1]>=a[y])//第一个人选左端
      sa=solve(x+2,y)+a[x]-a[x+1];
   else
      sa=solve(x+1,y-1)+a[x]-a[y];
   if(a[x]<a[y-1])//第一个人选右端
      sb=solve(x,y-2)+a[y]-a[y-1];
   else
      sb=solve(x+1,y-1)+a[y]-a[x];
   return dp[x][y]=max(sa,sb);
}

int main()
{
    int l=0;
    while(~scanf("%d",&n)&&n)
    {
        for(int i=0;i<n;i++)
            scanf("%d",&a[i]);
        memset(dp,-1,sizeof(dp));
        printf("In game %d, the greedy strategy might lose by as many as %d points.\n",++l,solve(0,n-1));
    }
    return 0;
}


转载于:https://www.cnblogs.com/hrhguanli/p/4050412.html

内容概要:本文档详细介绍了基于MATLAB实现多目标差分进化(MODE)算法进行无人机三维路径规划的项目实例。项目旨在提升无人机在复杂三维环境中路径规划的精度、实时性、多目标协调处理能力、障碍物避让能力和路径平滑性。通过引入多目标差分进化算法,项目解决了传统路径规划算法在动态环境和多目标优化中的不足,实现了路径长度、飞行安全距离、能耗等多个目标的协调优化。文档涵盖了环境建模、路径编码、多目标优化策略、障碍物检测与避让、路径平滑处理等关键技术模块,并提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,对无人机路径规划和多目标优化算法感兴趣的科研人员、工程师和研究生。 使用场景及目标:①适用于无人机在军事侦察、环境监测、灾害救援、物流运输、城市管理等领域的三维路径规划;②通过多目标差分进化算法,优化路径长度、飞行安全距离、能耗等多目标,提升无人机任务执行效率和安全性;③解决动态环境变化、实时路径调整和复杂障碍物避让等问题。 其他说明:项目采用模块化设计,便于集成不同的优化目标和动态环境因素,支持后续算法升级与功能扩展。通过系统实现和仿真实验验证,项目不仅提升了理论研究的实用价值,还为无人机智能自主飞行提供了技术基础。文档提供了详细的代码示例,有助于读者深入理解和实践该项目。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值