P3539 [POI2012]ROZ-Fibonacci Representation

介绍一种使用斐波那契数通过加减运算表示任意正整数的方法,并提供了一种高效的算法实现,利用贪心策略找到表示特定数值所需的最少斐波那契数个数。

题目描述

The Fibonacci sequence is a sequence of integers, called Fibonacci numbers, defined as follows:

Fib0=0,Fib1=1,Fibn=Fibn−2+Fibn−1 for n>1Fib_{0}=0,Fib_{1}=1,Fib_{n}=Fib_{n-2}+Fib_{n-1}\ for\ n>1Fib0=0,Fib1=1,Fibn=Fibn2+Fibn1 for n>1

Its initial elements are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

Byteasar investigates representations of numbers as sums or differences of Fibonacci numbers. Currently he is wondering what is the minimum representation, i.e., one with the minimum number of (not necessarily different) Fibonacci numbers, for a given positive integer kkk . For example, the numbers 10, 19, 17, and 1070 can be minimally represented using, respectively, 2, 2, 3, and 4 Fibonacci numbers as follows:

10=5+510=5+510=5+5

19=21−219=21-219=212

17=13+5−117=13+5-117=13+51

1070=987+89−5−11070=987+89-5-11070=987+8951

Help Byteasar! Write a program that, for a given positive integer kkk determines the minimum number of Fibonacci numbers required to represent kkk as their sum or difference.

给一个数,问最少可以用几个斐波那契数加加减减凑出来

例如 10=5+5 19=21-2

17=13+5-1

1070=987+89-5-1

输入输出格式

输入格式:

In the first line of the standard input a single positive integer ppp is given (1≤p≤101\le p\le 101p10 ) that denotes the number of queries. The following ppp lines hold a single positive integer kkk each (1≤k≤1×10171\le k\le 1\times 10^{17}1k1×1017 ).

多组数据

输出格式:

For each query your program should print on the standard output the minimum number of Fibonacci numbers needed to represent the number kkk as their sum or difference.

输入输出样例

输入样例#1: 
1
1070
输出样例#1: 
4

说明

给一个数,问最少可以用几个斐波那契数加加减减凑出来

 

Solution:

  贪心水题,刷了那么多道斐波拉契,看到本题感觉简直水到爆了(红题难度)。

  首先由于斐波拉契数的前两项是$1,1$,所以易得对于任何整数必能写成多个斐波拉契数加减的形式。

  对于一个数$x$,我们贪心找到与$x$差值最小的斐波拉契数,将新的$x$赋为差值,每次进行这个操作,统计次数,直到$x$为$0$为止,输出次数。

  证明上述过程也很简单:由于我们知道任何整数必能写成多个斐波拉契数加减的形式,所以我们显然使$x$每次变得越小越好(即减的越多越好),因为每个斐波拉契数都等于前面两项的和,所以我们完全没必要将一步操作改为两步操作。

  举个例子:当$n=8$,答案是$1$(即$8=8$,$8$为第6项),而我们不需要将前面的$3,5$什么的记录进去,因为这样会多$1$步操作。当$n=11$,答案是$2$(即$11=8+3$或$11=13-2$),显然不用将$8$拆为更小的斐波拉契数之和,也不用将$13$拆为更小的斐波拉契数之和,这样必然会徒增次数。

  那么具体实现时,直接预处理斐波拉契数,然后对于每次询问,二分出第一个大于等于该值的位置$p$,然后第一个小于该值的值位置$p-1$,则$x=min(f[p]-x,x-f[p-1])$。

代码:

 

#include<bits/stdc++.h>
#define il inline
#define ll long long
using namespace std;
ll f[100],n,t;
il void getans(ll x){
    ll p=lower_bound(f+1,f+93,x)-f,q=p-1,tot=0;
    while(x){
        x=min(f[p]-x,x-f[q]);
        p=lower_bound(f+1,f+93,x)-f;
        q=p-1;
        tot++;
    }
    cout<<tot<<endl;
}
int main()
{
    ios::sync_with_stdio(0);
    cin>>n;
    f[1]=f[2]=1;
    for(int i=3;i<=100;i++)f[i]=f[i-1]+f[i-2];
    while(n--){
        cin>>t;
        getans(t);
    }
}

 

 

 

 

转载于:https://www.cnblogs.com/five20/p/8810419.html

(1)普通用户端(全平台) 音乐播放核心体验: 个性化首页:基于 “听歌历史 + 收藏偏好” 展示 “推荐歌单(每日 30 首)、新歌速递、相似曲风推荐”,支持按 “场景(通勤 / 学习 / 运动)” 切换推荐维度。 播放页功能:支持 “无损音质切换、倍速播放(0.5x-2.0x)、定时关闭、歌词逐句滚动”,提供 “沉浸式全屏模式”(隐藏冗余控件,突出歌词与专辑封面)。 多端同步:自动同步 “播放进度、收藏列表、歌单” 至所有登录设备(如手机暂停后,电脑端打开可继续播放)。 音乐发现与管理: 智能搜索:支持 “歌曲名 / 歌手 / 歌词片段” 搜索,提供 “模糊匹配(如输入‘晴天’联想‘周杰伦 - 晴天’)、热门搜索词推荐”,结果按 “热度 / 匹配度” 排序。 歌单管理:创建 “公开 / 私有 / 加密” 歌单,支持 “批量添加歌曲、拖拽排序、一键分享到社交平台”,系统自动生成 “歌单封面(基于歌曲风格配色)”。 音乐分类浏览:按 “曲风(流行 / 摇滚 / 古典)、语言(国语 / 英语 / 日语)、年代(80 后经典 / 2023 新歌)” 分层浏览,每个分类页展示 “TOP50 榜单”。 社交互动功能: 动态广场:查看 “关注的用户 / 音乐人发布的动态(如‘分享新歌感受’)、好友正在听的歌曲”,支持 “点赞 / 评论 / 转发”,可直接点击动态中的歌曲播放。 听歌排行:个人页展示 “本周听歌 TOP10、累计听歌时长”,平台定期生成 “全球 / 好友榜”(如 “好友中你本周听歌时长排名第 3”)。 音乐圈:加入 “特定曲风圈子(如‘古典音乐爱好者’)”,参与 “话题讨论(如‘你心中最经典的钢琴曲’)、线上歌单共创”。 (2)音乐人端(创作者中心) 作品管理: 音乐上传:支持 “无损音频(FLAC/WAV)+ 歌词文件(LRC)+ 专辑封面” 上传,填写 “歌曲信息
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值