TensorLayer官方中文文档1.7.4:API – 可视化

本文介绍TensorLayer提供的多种可视化工具,包括读取和保存图像、绘制目标检测框、可视化权重矩阵及CNN滤波器等。这些工具适用于深度学习模型的训练过程中的中间结果展示。

 

API - 可视化

TensorFlow 提供了可视化模型和激活输出等的工具 TensorBoard
在这里,我们进一步提供一些可视化模型参数和数据的函数。

 

read_image(image[, path])Read one image.
read_images(img_list[, path, n_threads, ...])Returns all images in list by given path and name of each image file.
save_image(image[, image_path])Save one image.
save_images(images, size[, image_path])Save mutiple images into one single image.
draw_boxes_and_labels_to_image(image[, ...])Draw bboxes and class labels on image.
W([W, second, saveable, shape, name, fig_idx])Visualize every columns of the weight matrix to a group of Greyscale img.
CNN2d([CNN, second, saveable, name, fig_idx])Display a group of RGB or Greyscale CNN masks.
frame([I, second, saveable, name, cmap, fig_idx])Display a frame(image).
images2d([images, second, saveable, name, ...])Display a group of RGB or Greyscale images.
tsne_embedding(embeddings, reverse_dictionary)Visualize the embeddings by using t-SNE.

读取与保存图片

读取单个图片

tensorlayer.visualize. read_image (image, path='')[源代码]

Read one image.

Parameters:

images : string, file name.

path : string, path.

读取多个图片

tensorlayer.visualize. read_images (img_list, path='', n_threads=10, printable=True)[源代码]

Returns all images in list by given path and name of each image file.

Parameters:

img_list : list of string, the image file names.

path : string, image folder path.

n_threads : int, number of thread to read image.

printable : bool, print infomation when reading images, default is True.

保存单个图片

tensorlayer.visualize. save_image (image, image_path='')[源代码]

Save one image.

Parameters:

images : numpy array [w, h, c]

image_path : string.

保存多个图片

tensorlayer.visualize. save_images (images, size, image_path='')[源代码]

Save mutiple images into one single image.

Parameters:

images : numpy array [batch, w, h, c]

size : list of two int, row and column number.

number of images should be equal or less than size[0] * size[1]

image_path : string.

Examples

>>> images = np.random.rand(64, 100, 100, 3) >>> tl.visualize.save_images(images, [8, 8], 'temp.png') 

保存目标检测图片

tensorlayer.visualize. draw_boxes_and_labels_to_image (image, classes=[], coords=[], scores=[], classes_list=[], is_center=True, is_rescale=True, save_name=None)[源代码]

Draw bboxes and class labels on image. Return or save the image with bboxes, example in the docs of tl.prepro.

Parameters:

image : RGB image in numpy.array, [height, width, channel].

classes : a list of class ID (int).

coords : a list of list for coordinates.

  • Should be [x, y, x2, y2] (up-left and botton-right format)
  • If [x_center, y_center, w, h] (set is_center to True).

scores : a list of score (float). (Optional)

classes_list : list of string, for converting ID to string on image.

is_center : boolean, defalt is True.

If coords is [x_center, y_center, w, h], set it to True for converting [x_center, y_center, w, h] to [x, y, x2, y2] (up-left and botton-right).
If coords is [x1, x2, y1, y2], set it to False.

is_rescale : boolean, defalt is True.

If True, the input coordinates are the portion of width and high, this API will scale the coordinates to pixel unit internally.
If False, feed the coordinates with pixel unit format.

save_name : None or string

The name of image file (i.e. image.png), if None, not to save image.

References

可视化模型参数

可视化Weight Matrix

tensorlayer.visualize. W (W=None, second=10, saveable=True, shape=[28, 28], name='mnist', fig_idx=2396512)[源代码]

Visualize every columns of the weight matrix to a group of Greyscale img.

Parameters:

W : numpy.array

The weight matrix

second : int

The display second(s) for the image(s), if saveable is False.

saveable : boolean

Save or plot the figure.

shape : a list with 2 int

The shape of feature image, MNIST is [28, 80].

name : a string

A name to save the image, if saveable is True.

fig_idx : int

matplotlib figure index.

Examples

>>> tl.visualize.W(network.all_params[0].eval(), second=10, saveable=True, name='weight_of_1st_layer', fig_idx=2012) 

可视化CNN 2d filter

tensorlayer.visualize. CNN2d (CNN=None, second=10, saveable=True, name='cnn', fig_idx=3119362)[源代码]

Display a group of RGB or Greyscale CNN masks.

Parameters:

CNN : numpy.array

The image. e.g: 64 5x5 RGB images can be (5, 5, 3, 64).

second : int

The display second(s) for the image(s), if saveable is False.

saveable : boolean

Save or plot the figure.

name : a string

A name to save the image, if saveable is True.

fig_idx : int

matplotlib figure index.

Examples

>>> tl.visualize.CNN2d(network.all_params[0].eval(), second=10, saveable=True, name='cnn1_mnist', fig_idx=2012) 

可视化图像

matplotlib显示单图

tensorlayer.visualize. frame (I=None, second=5, saveable=True, name='frame', cmap=None, fig_idx=12836)[源代码]

Display a frame(image). Make sure OpenAI Gym render() is disable before using it.

Parameters:

I : numpy.array

The image

second : int

The display second(s) for the image(s), if saveable is False.

saveable : boolean

Save or plot the figure.

name : a string

A name to save the image, if saveable is True.

cmap : None or string

'gray' for greyscale, None for default, etc.

fig_idx : int

matplotlib figure index.

Examples

>>> env = gym.make("Pong-v0") >>> observation = env.reset() >>> tl.visualize.frame(observation) 

matplotlib显示多图

tensorlayer.visualize. images2d (images=None, second=10, saveable=True, name='images', dtype=None, fig_idx=3119362)[源代码]

Display a group of RGB or Greyscale images.

Parameters:

images : numpy.array

The images.

second : int

The display second(s) for the image(s), if saveable is False.

saveable : boolean

Save or plot the figure.

name : a string

A name to save the image, if saveable is True.

dtype : None or numpy data type

The data type for displaying the images.

fig_idx : int

matplotlib figure index.

Examples

>>> X_train, y_train, X_test, y_test = tl.files.load_cifar10_dataset(shape=(-1, 32, 32, 3), plotable=False) >>> tl.visualize.images2d(X_train[0:100,:,:,:], second=10, saveable=False, name='cifar10', dtype=np.uint8, fig_idx=20212) 

可视化词嵌入矩阵

tensorlayer.visualize. tsne_embedding (embeddings, reverse_dictionary, plot_only=500, second=5, saveable=False, name='tsne', fig_idx=9862)[源代码]

Visualize the embeddings by using t-SNE.

Parameters:

embeddings : a matrix

The images.

reverse_dictionary : a dictionary

id_to_word, mapping id to unique word.

plot_only : int

The number of examples to plot, choice the most common words.

second : int

The display second(s) for the image(s), if saveable is False.

saveable : boolean

Save or plot the figure.

name : a string

A name to save the image, if saveable is True.

fig_idx : int

matplotlib figure index.

Examples

>>> see 'tutorial_word2vec_basic.py'
>>> final_embeddings = normalized_embeddings.eval() >>> tl.visualize.tsne_embedding(final_embeddings, labels, reverse_dictionary, ... plot_only=500, second=5, saveable=False, name='tsne') 

艾伯特(http://www.aibbt.com/)国内第一家人工智能门户

转载于:https://www.cnblogs.com/aibbtcom/p/8540529.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值