[神经网络]一步一步使用Mobile-Net完成视觉识别(一)

本文详细介绍了如何配置环境以使用 TensorFlow Object Detection API,包括所需库的安装、COCO API 的设置及 protobuf 的编译。通过一系列步骤,确保能够顺利进行物体检测模型的训练和测试。

1.环境配置

2.数据集获取

3.训练集获取

4.训练

5.调用测试训练结果

6.代码讲解

  本文是第一篇,环境配置篇。

先打开tensorflow object detection api 看看需要什么配置。

当然,我写的教程不是很详细,详细的请看官方的教程:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md

Tensorflow Object Detection API depends on the following libraries:

  • Protobuf 3.0.0
  • Python-tk
  • Pillow 1.0
  • lxml
  • tf Slim (which is included in the "tensorflow/models/research/" checkout)
  • Jupyter notebook
  • Matplotlib
  • Tensorflow (>=1.9.0)
  • Cython
  • contextlib2
  • cocoapi

在安装之前,我们先把这个object detection model 给git下来,在任意目录下,命令行输入以下命令。

git clone https://github.com/tensorflow/models.git

完成之后就能看到一个model文件夹,当然,git命令使用的基础是你已经安装了git,怎么安装git自己百度吧。。

下一步安装tensorflow,安装过的可以直接跳过。

# 如果你要用CPU,就用下面的代码
pip install tensorflow
#如果你用GPU,就用这里的代码
pip install tensorflow-gpu

当然,pip命令使用的基础是你已经安装了pip,如果你不会安装,请自行百度。

我默认你已经完成了上面的操作,下面就开始安装其他东西。

sudo apt-get install protobuf-compiler python-pil python-lxml python-tk
pip install --user Cython
pip install --user contextlib2
pip install --user jupyter
pip install --user matplotlib

命令行里输入以上的命令,完成Cython等库的安装。

下一步至关重要,你需要安装COCOAPI。

在任何一个目录下将cocoapi 给git下来,进入python api目录,编译。

然后进入之前输入make之后的指令,清注意将<path_to_tensorflow>替换为models之前的绝对路径。

git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
make
cp -r pycocotools <path_to_tensorflow>/models/research/

这里你已经完成了很多工作,从models/research执行以下命令

# From tensorflow/models/research/
protoc object_detection/protos/*.proto --python_out=.

#From tensorflow/models/research/
wget -O protobuf.zip https://github.com/google/protobuf/releases/download/v3.0.0/protoc-3.0.0-linux-x86_64.zip
unzip protobuf.zip

# From tensorflow/models/research/
./bin/protoc object_detection/protos/*.proto --python_out=.

这段代码完成了对protobuf的编译工作,这只适用于linux。

接下来就是将pythonpath添加进path

# From tensorflow/models/research/
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim

 

接下来就是测试是否安装成功了。

python object_detection/builders/model_builder_test.py

 

输入以上指令,如果出现

.....................
----------------------------------------------------------------------
Ran 21 tests in 0.074s

OK

表明你安装成功了。准备下一步吧。

 

转载于:https://www.cnblogs.com/aoru45/p/9858520.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值