luogu P1268 树的重量

一开始把这题想复杂了,,,

这里记\(di[i][j]\)表示\(i\)\(j\)的距离

首先如果\(n=2\),答案显然为\(di[1][2]\)

如果\(n=3\)

233

懒得画图了盗图过来

那么3号点会从1,2号点的路径上伸出去,相比较\(n=2\),答案多出了\(\frac{di[1][3]+di[2][3]-di[1][2]}{2}\)

\(n=4\)的情况

233

如果把4看做从1,2号点路径上伸出去的,那么答案(红色部分)会算重一部分;把4看做从1,3号点路径上伸出去的,那么答案(蓝色部分色部分)则是正确的,同时我们也发现蓝色比红色短

以此类推,每次插入一个点\(i\),把它依次看做从1,\(j(1<j<i)\)号点路径上伸出去的,然后答案加上\(min(\frac{di[1][i]+di[j][i]-di[1][j]}{2})\).取min才不会和前面的答案算重

其实我一开始考虑记录每条路径上哪个位置伸出去什么点,麻烦的死

#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register

using namespace std;
const int N=1000000+10;
il LL rd()
{
    re LL x=0,w=1;re char ch;
    while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
    return x*w;
}
int n,di[40][40];

int main()
{
  while(1)
    {
      n=rd();
      if(n==0) break;
      for(int i=1;i<=n;i++) di[i][i]=233;
      for(int i=1;i<=n;i++)
        for(int j=i+1;j<=n;j++)
        di[i][j]=di[j][i]=rd();
      int ans=di[1][2];
      for(int i=3;i<=n;i++)
        {
          int an=233;
          for(int j=2;j<i;j++) an=min(an,(di[1][i]+di[i][j]-di[1][j])>>1);
          ans+=an;
        }
      printf("%d\n",ans);
    }
  return 0;
}

转载于:https://www.cnblogs.com/smyjr/p/9478404.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值