python随机森林筛选变量_一种基于随机森林的改进特征筛选算法

本文探讨了随机森林算法在肝癌预后预测中的应用,提出了一种改进的基于随机森林的特征筛选算法。通过Python编程设计的系统,研究了不同算法、参数和内部策略对预测精度和计算性能的影响。结果显示,随机森林具有更好的泛化能力和训练速度,改进的特征筛选算法能在保证预测精度的同时显著减少特征数量。

刘云翔 陈斌 周子宜

463909fd40cadf434a4069af5023ff41.png

93f91aff8059ffe52c4ca4c80d0ff200.png

de8a5d682c22c2c786e0d481741382ea.png

摘  要: 肝癌是一种我国高发的消化系统恶性肿瘤,患者死亡率高,威胁极大。而其预后情况通常只能通过医生的专业知识和经验积累来粗略判断,准确率较差。因此文中在分析随机森林算法的基本原理的基础上,提出一种改进的基于随机森林的特征筛选算法,并应用Python编程设计了一个能够预处理数据、调用这些算法、控制各参数并展现测试结果的系统,最终将该系统应用于肝癌预后预测,比较分析了不同的算法、参数、内部策略对预测精度和计算性能的影响。研究结果表明,随机森林相比剪枝过的决策树具备更好的泛化能力和训练速度,改进的特征筛选算法能够在保证预测精度的前提下显著缩小特征集。

关键词: 随机森林算法; 特征筛选; 肝癌预后预测; 决策树; 预测精度; 特征集

中图分类号: TN911?34; TP3?05; TP312          文献标识码: A                文章编号: 1004?3

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值