efficientransac_Efficient RANSAC for Point-Cloud Shape Detection

本文介绍了一种自动高效的算法,用于检测无组织点云中的基本形状。该算法将点云分解为一组固有形状及剩余点的混合结构。通过随机采样,能够快速检测平面、球体、圆柱体、圆锥体和环面等形状。即使在存在大量异常值和高噪声的情况下,算法也表现出良好的鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Volume0(1981),Number0pp.1–12

Ef cientRANSACforPoint-CloudShapeDetection

RuwenSchnabel

RolandWahl

ReinhardKlein

UniversitätBonn,ComputerGraphicsGroup

Abstract

Inthisworkwepresentanautomaticalgorithmtodetectbasicshapesinunorganizedpointclouds.Thealgorithmdecomposesthepointcloudintoaconcise,hybridstructureofinherentshapesandasetofremainingpoints.Eachdetectedshapeservesasaproxyforasetofcorrespondingpoints.Ourmethodisbasedonrandomsamplinganddetectsplanes,spheres,cylinders,conesandtori.Formodelswithsurfacescomposedofthesebasicshapesonly,e.g.CADmodels,weautomaticallyobtainarepresentationsolelyconsistingofshapeproxies.Wedemonstratethatthealgorithmisrobusteveninthepresenceofmanyoutliersandahighdegreeofnoise.Theproposedmethodscaleswellwithrespecttothesizeoftheinputpointcloudandthenumberandsizeoftheshapeswithinthedata.Evenpointsetswithseveralmillionsofsamplesarerobustlydecomposedwithinlessthanaminute.Moreoverthealgorithmisconceptuallysimpleandeasytoimplement.Applicationareasincludemeasurementofphysicalparameters,scanregistration,surfacecompression,hybridrendering,shapeclassi cation,meshing,simpli cation,approximationandreverseengineering.

CategoriesandSubjectDescriptors(accordingtoACMCCS):I.4.8[ImageProcessingandComputerVision]:SceneAnalysisShape;SurfaceFitting;I.3.5[ComputerGraphics]:ComputationalGeometryandObjectModelingCurve,surface,solid,andobjectrepresentations

1.Introduction

Duetotheincreasingsizeandcomplexityofgeometricdatasetsthereisanever-growingdemandforconciseandmean-ingfulabstractionsofthisdata.Especiallywhendealingwithdigitizedgeometry,e.g.acquiredwithalaserscanner,nohandlesformodi cationofthedataareavailabletotheuserotherthanthedigitizedpointsthemselves.However,inor-dertobeabletomakeuseofthedataeffectively,therawdigitizeddatahastobeenrichedwithabstractionsandpos-siblysemanticinformation,providingtheuserwithhigher-levelinteractionpossibilities.Onlysuchhandlescanpro-videtheinteractionrequiredforinvolvededitingprocesses,suchasdeleting,movingorresizingcertainpartsandhencecanmakethedatamorereadilyusableformodelingpur-poses.Ofcourse,traditionalreverseengineeringapproachescanprovidesomeoftheabstractionsthatweseek,butusu-allyreverseengineeringfocuseson ndingareconstructionoftheunderlyinggeometryandtypicallyinvolvesquitete-dioususerinteraction.Thisisnotjusti edinasettingwhere

acompleteanddetailedreconstructionisnotrequiredatall,orshalltakeplaceonlyaftersomebasiceditingoperationshavebeenappliedtothedata.Ontheotherhand,detectinginstancesofasetofprimitivegeometricshapesinthepointsampleddataisameanstoquicklyderivehigherlevelsofab-straction.ForexampleinFig.1patchesofprimitiveshapesprovideacoarseapproximationofthegeometrythatcouldbeusedtocompressthepoint-cloudveryeffectively.Anotherproblemarisingwhendealingwithdigitizedgeom-etryistheoftenhugesizeofthedatasets.Thereforetheef ciencyofalgorithmsinferringabstractionsofthedataisofutmostimportance,especiallyininteractivesettings.Thus,inthispaperwefocusespeciallyon ndinganef -cientalgorithmforpoint-cloudshapedetection,inordertobeabletodealevenwithlargepoint-clouds.OurworkisahighperformanceRANSAC[FB81]algorithmthatiscapa-bletoextractavarietyofdifferenttypesofprimitiveshapes,whileretainingsuchfavorablepropertiesoftheRANSACparadigmasrobustness,generalityandsimplicity.Attheheartofouralgorithmareanovel,hierarchicallystructuredsamplingstrategyforcandidateshapegenerationaswellasanovel,lazycostfunctionevaluationscheme,whichsignif-

e-mail:{schnabel,wahl,rk}@cs.uni-bonn.de

cTheEurographicsAssociationandBlackwellPublishing2007.PublishedbyBlackwell

Publishing,9600GarsingtonRoad,OxfordOX42DQ,UKand350MainStreet,Malden,MA02148,USA.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值