Preface
1. Polygon triangulation;
1.1 Art Gallery Theorems
1.2 Triangulation:Theory
1.3 Area of Polygon
1.4 Implementation Issues
1.5 Segment Intersection
1.6 Triangulation:Implementation
2. Polygon partitioning;
2.1 Monotone Partitioning
2.2 Trapezoidalization
2.3 Partition into Monotone Mountains
2.4 Linear-Time Triangulation
2.5 Convex partitioning
3. Convex hulls in two dimensions;
3.1 Definitons of Convexity and Convex Hulls
3.2 Naive Algorithms for Extreme Points
3.3 Gift Wrapping
3.4 QuickHull
3.5 Graham's Algorithm
3.6 Lower Bound
3.7 Incremental Algorithm
3.8 Divide and Conquer
3.9 Additional Exercises
4. Convex hulls in three dimensions;
4.1 Polyhedra
4.2 Hull Algorithms
4.3 Implementation of Incremental Algorithm
4.4 Polyhedral Boundary Representations
4.5 Randomized Incremental Algorithm
4.6 Higher Dimensions
4.7 Addditional Exercises
5. Voronoi diagrams;
5.1 Applications:Preview
5.2 Defintions and Basic properties
5.3 Delaunay Triangulations
5.4 Algorithms
5.5 Applications in Detail
5.6 Medial Axis
5.7 Connection to Conves Hulls
5.8 Connection to Arrangements
6. Arrangements;
6.1 Introduction
6.2 Combilnatorics of Arrangements
6.3 Incremental Algorithm
6.4 Three and Higher Dimensions
6.5 Duality
6.6 Higher_Order Voronoi Diagrams
6.7 Applications
6.8 Sdditional Exercises
7. Search and intersection;
……
8. Motion planning;
9. Sources.
Bibliography
Index
本文深入探讨了多边形的三角剖分、单调分区及其在实现中的问题,介绍了计算几何中的关键概念如凸包算法,包括礼盒算法和快速凸包算法。同时,讲解了三维空间中的凸包问题和Voronoi图的应用,涉及Delaunay三角剖分和增量算法。这些理论与算法在图形学、路径规划等领域有广泛应用。
1190

被折叠的 条评论
为什么被折叠?



