python 平滑时间序列_时间序列平滑以实现更好的聚类

本文探讨了如何使用Python对时间序列进行平滑处理,以改善聚类效果。通过平滑时间序列数据,可以减少噪声并提高后续聚类分析的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python 平滑时间序列

In time series analysis, the presence of dirty and messy data can alter our reasonings and conclusions. This is true, especially in this domain, because the temporal dependency plays a crucial role when dealing with temporal sequences.

在时间序列分析中,脏数据和杂乱数据的存在会改变我们的推理和结论。 这是正确的,尤其是在此领域,因为在处理时间序列时,时间依赖性起着至关重要的作用。

Noise or outliers must be handled with care following ad-hoc solutions. In this situation, the tsmoothie package can help us save a lot of time in preparing time series for our analysis. Tsmoothie is a python library for time series smoothing and outlier detection that can handle multiple series in a vectorized way. It’s useful because it can provide the preprocess steps we needed, like denoising or outlier removal, preserving the temporal pattern present in our raw data.

按照临时解决方案,必须小心处理噪声或异常值。 在这种情况下, tsmoothie软件包可以帮助我们节省大量时间来准备用于分析的时间序列。 Tsmoothie是用于时间序列平滑和离群值检测的python库,可以以矢量化方式处理多个序列。 这很有用,因为它可以提供我们所需的预处理步骤,例如去噪或离群值去除,保留原始数据中存在的时间模式。

In this post, we use these trinks to improve a clustering task. More precisely, we try to identify some changes in financial data carrying out an unsupervised approach. In the end, we will expect to point out clear patterns in the closing prices that can be used to inspect the hidden behavior of the market.

在本文中,我们将使用这些工具来改善聚类任务。 更准确地说,我们尝试在无监督的情况下识别财务数据中的某些变化。 最后,我们期望指出收盘价的清晰模式,可用于检查市场的隐藏行为。

数据 (THE DATA)

As introduced before, we operate with financial time series. There are a lot of tools or premade datasets that provide and store financial data. For our aims, we use a dataset collected from Kaggle. The Stock data 2000–2018 is a cleaned collection of stock prices from 2000 to 2018 of around 39 different stocks. It reports volumes, open, high, low, and close pric

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值