千万级的大表,如何做性能优化?

👉 欢迎加入小哈的星球,你将获得: 专属的项目实战 / 1v1 提问 / Java 学习路线 / 学习打卡 / 每月赠书 / 社群讨论

  • 新项目:《从零手撸:仿小红书(微服务架构)》 正在持续爆肝中,基于 Spring Cloud Alibaba + Spring Boot 3.x + JDK 17..., 点击查看项目介绍

  • 《从零手撸:前后端分离博客项目(全栈开发)》 2期已完结,演示链接:http://116.62.199.48/;

  • 专栏阅读地址:https://www.quanxiaoha.com/column

截止目前,累计输出 85w+ 字,讲解图 3088+ 张,还在持续爆肝中.. 后续还会上新更多项目,目标是将 Java 领域典型的项目都整一波,如秒杀系统, 在线商城, IM 即时通讯,Spring Cloud Alibaba 等等,戳我加入学习,解锁全部项目,已有3000+小伙伴加入

图片

前言

大表优化是一个老生常谈的话题,但随着业务规模的增长,总有人会“中招”。

很多小伙伴的数据库在刚开始的时候表现良好,查询也很流畅,但一旦表中的数据量上了千万级,性能问题就开始浮现:查询慢、写入卡、分页拖沓、甚至偶尔直接宕机。

这时大家可能会想,是不是数据库不行?是不是需要升级到更强的硬件?

其实很多情况下,根本问题在于没做好优化

今天,我们就从问题本质讲起,逐步分析大表常见的性能瓶颈,以及如何一步步优化,希望对你会有所帮助。

1 为什么大表会慢?

在搞优化之前,先搞清楚大表性能问题的根本原因。数据量大了,为什么数据库就慢了?

1.1 磁盘IO瓶颈

大表的数据是存储在磁盘上的,数据库的查询通常会涉及到数据块的读取。

当数据量很大时,单次查询可能需要从多个磁盘块中读取大量数据,磁盘的读写速度会直接限制查询性能。

举例:

假设有一张订单表orders,里面存了5000万条数据,你想要查询某个用户的最近10条订单:

SELECT * FROM orders WHERE user_id = 123ORDERBY order_time DESCLIMIT10;

如果没有索引,数据库会扫描整个表的所有数据,再进行排序,性能肯定会拉胯。

1.2 索引失效或没有索引

如果表的查询没有命中索引,数据库会进行全表扫描(Full Table Scan),也就是把表里的所有数据逐行读一遍。

这种操作在千万级别的数据下非常消耗资源,性能会急剧下降。

举例:

比如你在查询时写了这样的条件:

SELECT * FROM orders WHEREDATE(order_time) = '2023-01-01';

这里用了DATE()函数,数据库需要对所有记录的order_time字段进行计算,导致索引失效。

1.3 分页性能下降

分页查询是大表中很常见的场景,但深度分页(比如第100页之后)会导致性能问题。

即使你只需要10条数据,但数据库仍然需要先扫描出前面所有的记录。

举例:

查询第1000页的10条数据:

SELECT * FROM orders ORDERBY order_time DESCLIMIT9990, 10;

这条SQL实际上是让数据库先取出前9990条数据,然后丢掉,再返回后面的10条。

随着页码的增加,查询的性能会越来越差。

1.4 锁争用

在高并发场景下,多个线程同时对同一张表进行增删改查操作,会导致行锁或表锁的争用,进而影响性能。

2 性能优化的总体思路

性能优化的本质是减少不必要的IO、计算和锁竞争,目标是让数据库尽量少做“无用功”。

优化的总体思路可以总结为以下几点:

  1. 表结构设计要合理:尽量避免不必要的字段,数据能拆分则拆分。

  2. 索引要高效:设计合理的索引结构,避免索引失效。

  3. SQL要优化:查询条件精准,尽量减少全表扫描。

  4. 分库分表:通过水平拆分、垂直拆分减少单表数据量。

  5. 缓存和异步化:减少对数据库的直接压力。

接下来,我们逐一展开。

3 表结构设计优化

表结构是数据库性能优化的基础,设计不合理的表结构会导致后续的查询和存储性能问题。

3.1 精简字段类型

字段的类型决定了存储的大小和查询的性能。

  • 能用INT的不要用BIGINT

  • 能用VARCHAR(100)的不要用TEXT

  • 时间字段建议用TIMESTAMPDATETIME,不要用CHARVARCHAR来存时间。

举例:
-- 不推荐
CREATETABLE orders (
    idBIGINT,
    user_id BIGINT,
    order_status VARCHAR(255),
    remarks TEXT
);

-- 优化后
CREATETABLE orders (
    idBIGINT,
    user_id INTUNSIGNED,
    order_status TINYINT, -- 状态用枚举表示
    remarks VARCHAR(500) -- 限制最大长度
);

这样可以节省存储空间,查询时也更高效。

3.2  表拆分:垂直拆分与水平拆分

垂直拆分

当表中字段过多,某些字段并不是经常查询的,可以将表按照业务逻辑拆分为多个小表。

示例: 将订单表分为两个表:orders_basic 和 orders_details

-- 基本信息表
CREATETABLE orders_basic (
    idBIGINT PRIMARY KEY,
    user_id INTUNSIGNED,
    order_time TIMESTAMP
);

-- 详情表
CREATETABLE orders_details (
    idBIGINT PRIMARY KEY,
    remarks VARCHAR(500),
    shipping_address VARCHAR(255)
);
水平拆分

当单表的数据量过大时,可以按一定规则拆分到多张表中。

示例: 假设我们按用户ID对订单表进行水平拆分:

orders_0 -- 存user_id % 2 = 0的订单
orders_1 -- 存user_id % 2 = 1的订单

拆分后每张表的数据量大幅减少,查询性能会显著提升。

4 索引优化

索引是数据库性能优化的“第一杀器”,但很多人对索引的使用并不熟悉,导致性能不升反降。

4.1  创建合适的索引

为高频查询的字段创建索引,比如主键、外键、查询条件字段。

示例:
CREATEINDEX idx_user_id_order_time ON orders (user_id, order_time DESC);

上面的复合索引可以同时加速user_idorder_time的查询。

4.2  避免索引失效

  • 别对索引字段使用函数或运算
    错误:

    SELECT * FROM orders WHEREDATE(order_time) = '2023-01-01';

    优化:

    SELECT * FROM orders WHERE order_time >= '2023-01-01 00:00:00'
      AND order_time < '2023-01-02 00:00:00';
  • 注意隐式类型转换
    错误:

    SELECT * FROM orders WHERE user_id = '123';

    优化:

    SELECT * FROM orders WHERE user_id = 123;

5 SQL优化

5.1 减少查询字段

只查询需要的字段,避免SELECT *

-- 错误
SELECT * FROM orders WHERE user_id = 123;

-- 优化
SELECTid, order_time FROM orders WHERE user_id = 123;

5.2 分页优化

深度分页时,使用“延迟游标”的方式避免扫描过多数据。

-- 深分页(性能较差)
SELECT * FROM orders ORDERBY order_time DESCLIMIT9990, 10;

-- 优化:使用游标
SELECT * FROM orders WHERE order_time < '2023-01-01 12:00:00'
  ORDERBY order_time DESCLIMIT10;

6 分库分表

6.1 水平分库分表

当单表拆分后仍无法满足性能需求,可以通过分库分表将数据分散到多个数据库中。

常见的分库分表规则:
  • 按用户ID取模。

  • 按时间分区。

7 缓存与异步化

7.1 使用Redis缓存热点数据

对高频查询的数据可以存储到Redis中,减少对数据库的直接访问。

示例:
// 从缓存读取数据
String result = redis.get("orders:user:123");
if (result == null) {
    result = database.query("SELECT * FROM orders WHERE user_id = 123");
    redis.set("orders:user:123", result, 3600); // 设置缓存1小时
}

7.2 使用消息队列异步处理写操作

高并发写入时,可以将写操作放入消息队列(如Kafka),然后异步批量写入数据库,减轻数据库压力。

8 实战案例

问题:

某电商系统的订单表存储了5000万条记录,用户查询订单详情时,页面加载时间超过10秒。

解决方案:
  1. 垂直拆分订单表:将订单详情字段拆分到另一个表中。

  2. 创建复合索引:为user_idorder_time创建索引。

  3. 使用Redis缓存:将最近30天的订单缓存到Redis中。

  4. 分页优化:使用search_after代替LIMIT深分页。

总结

大表性能优化是一个系统性工程,需要从表结构、索引、SQL到架构设计全方位考虑。

千万级别的数据量看似庞大,但通过合理的拆分、索引设计和缓存策略,可以让数据库轻松应对。

最重要的是,根据业务特点选择合适的优化策略,切勿盲目追求“高大上”的方案


👉 欢迎加入小哈的星球,你将获得: 专属的项目实战 / 1v1 提问 / Java 学习路线 / 学习打卡 / 每月赠书 / 社群讨论

  • 新项目:《从零手撸:仿小红书(微服务架构)》 正在持续爆肝中,基于 Spring Cloud Alibaba + Spring Boot 3.x + JDK 17..., 点击查看项目介绍

  • 《从零手撸:前后端分离博客项目(全栈开发)》 2期已完结,演示链接:http://116.62.199.48/;

  • 专栏阅读地址:https://www.quanxiaoha.com/column

截止目前,累计输出 85w+ 字,讲解图 3088+ 张,还在持续爆肝中.. 后续还会上新更多项目,目标是将 Java 领域典型的项目都整一波,如秒杀系统, 在线商城, IM 即时通讯,Spring Cloud Alibaba 等等,戳我加入学习,解锁全部项目,已有3000+小伙伴加入

图片

图片

图片

1. 我的私密学习小圈子,从0到1手撸企业实战项目~
2. Spring Boot 设置动态定时任务,千万别再写死了~
3. MQ的数据一致性,如何保证?
4. 领导:谁再用 Redis 实现过期订单关闭,立马滚蛋!
最近面试BAT,整理一份面试资料《Java面试BATJ通关手册》,覆盖了Java核心技术、JVM、Java并发、SSM、微服务、数据库、数据结构等等。
获取方式:点“在看”,关注公众号并回复 Java 领取,更多内容陆续奉上。
PS:因公众号平台更改了推送规则,如果不想错过内容,记得读完点一下“在看”,加个“星标”,这样每次新文章推送才会第一时间出现在你的订阅列表里。
点“在看”支持小哈呀,谢谢啦
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值