LLaMA3各种安装方法

Llama 3 安装使用方法

 

git clone 安装

Llama3的git地址是 https://github.com/meta-llama/llama3 ,可以直接git克隆到本地

git clone https://github.com/meta-llama/llama3

然后在根目录运行

pip install -e .

去metallama官网登录使用下载该模型 https://llama.meta.com/llama-downloads/

  1. 1. 注册登录,您将得到一个电子邮件的网址下载模型。当你运行下载时,你需要这个网址,一旦你收到电子邮件,导航到你下载的骆驼存储库和运行下载。

  2. 2. 确保授予下载的执行权限。

  3. 3. 在此过程中,将提示您从邮件中输入URL。

  4. 4. 不要使用"复制链接"选项,而是要确保从电子邮件中手动复制链接

注意事项:

  1. 1. 替换 Meta-Llama-3-8B-Instruct/ 你的检查站目录的路径Meta-Llama-3-8B-Instruct/tokenizer.model 找到了你的标记器模型.

  2. 2. …–nproc_per_node 我们应该把它放在你所使用的模型的价值。

  3. 3. 调整max_seq_len 和max_batch_size 必要时参数.

  4. 4. 这个例子运行了 example_chat_completion.py 在这个存储库中找到,但是你可以将它更改为不同的文件。

  5. 5. 根据你本身的硬件来调整max_seq_len 和max_batch_size参数

    huggingface 平台下载

可以通过huggingface 平台下载(需要先进入huggingface平台申请,同意它的条款,)

Image

在这里插入图片描述

然后先安装huggingface工具

pip install huggingface-hub

然后指定meta-llama/Meta-Llama-3-8B-Instruct

huggingface-cli download meta-llama/Meta-Llama-3-8B-Instruct --include “original/*” --local-dir meta-llama/Meta-Llama-3-8B-Instruct

然后transformer的使用

import transformers
import torch
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
pipeline = transformers.pipeline(
  "text-generation",
  model="meta-llama/Meta-Llama-3-8B-Instruct",
  model_kwargs={"torch_dtype": torch.bfloat16},
  device="cuda", 
)

如果没有gpu的同学可以使用cpu device=cuda,计算性能会差一些

完整的使用方式:

基于ollama使用:

目前推荐使用ollama的8b,70b,instruct, text 其他量化模型是别的用户微调过的,建议使用原生的llama3. 执行:

ollama run llama3:instruct

或者

ollama run llama3  (ollama pull llama3:8b)

Image

在这里插入图片描述

Image

在这里插入图片描述

Image

在这里插入图片描述

测试llama3的生成速度非常快,至少是llama2的两倍,如果有强大的显存支持效率会更高。

import transformers
import torch
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)
messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]
prompt = pipeline.tokenizer.apply_chat_template(
        messages, 
        tokenize=False, 
        add_generation_prompt=True
)
terminators = [
    pipeline.tokenizer.eos_token_id,
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
    prompt,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值