形态学图像处理之细化算法

基本概念

        “骨架”是指一幅图像的骨骼部分,它描述物体的几何形状和拓扑结构,是重要的图像描绘子之一。计算骨架的过程一般称为“细化”或“骨架化”,在包括文字识别、工业零件形状识别以及印刷电路板自动检测在内的很多应用中,细化过程都发挥这关键作用。通常,对我们感兴趣的目标物体进行细化有助于突出目标的形状特点和拓扑结构并且减少冗余的信息。
在这里插入图片描述
这里给出细化算法
在这里插入图片描述

示例演示

        实现基于形态学的细化算法。与上面算法介绍不同,将白色作为前景,黑色作为背景。完整工程代码。

/*
 *only process binary image
 * white is foreground
*/
void Thining(const cv::Mat &src, cv::Mat &dst)
{

    //four conditions
    bool condition1 = false, condition2 = false, condition3 = false, condition4 = false;

    //n*n neighbours
    constexpr int N = 5;
    uchar neighbour[N][N];
    const int kOffset = N / 2;
    src.copyTo(dst);

    bool modified = true;
    while(modified)
    {
        modified = false;
        Mat img;
        dst.copyTo(img);

        for(int i = kOffset; i < (dst.rows - kOffset); i++)
        {
            for(int j = kOffset; j < (dst.cols - kOffset); j++)
            {
                if(dst.at<uchar>(i, j) == 0)
                    continue;

                condition1 = false;
                condition2 = false;
                condition3 = false;
                condition4 = false;

                //get N*N neighbours of current point
                //white : 0, black : 1
                for(int m = 0; m < N; m++)
                {
				    for(int n = 0; n < N; n++)
                    {
                        neighbour[m][n] = dst.at<uchar>(i + n - kOffset, j + m - kOffset) == 255 ? 1 : 0;
                    }
                }

                //2 <= NZ(P1) <=6
                int count = neighbour[1][1] + neighbour[1][2] + neighbour[1][3] +
                        neighbour[2][1] + neighbour[2][3] +
                        neighbour[3][1] + neighbour[3][2] + neighbour[3][3];
                if(count >= 2 && count <=6)
                    condition1 = true;

                //Z0(P1) == 1
                count = 0;
                if(neighbour[1][2] == 0 && neighbour[1][1] == 1)
                    count++;
                if(neighbour[1][1] == 0 && neighbour[2][1] == 1)
                    count++;
                if(neighbour[2][1] == 0 && neighbour[3][1] == 1)
                    count++;
                if(neighbour[3][1] == 0 && neighbour[3][2] == 1)
                    count++;
                if(neighbour[3][2] == 0 && neighbour[3][3] == 1)
                    count++;
                if(neighbour[3][3] == 0 && neighbour[2][3] == 1)
                    count++;
                if(neighbour[2][3] == 0 && neighbour[1][3] == 1)
                    count++;
                if(neighbour[1][3] == 0 && neighbour[1][2] == 1)
                    count++;
                if(count == 1)
                    condition2 = true;

                //P2*P4*P8 = 0 or Z0(P2) != 1
                if(neighbour[1][2] * neighbour[2][1] * neighbour[2][3] == 0)
                    condition3 = true;
                else
                {
                    count = 0;
                    if(neighbour[0][2] == 0 && neighbour[0][1] == 1)
                        count++;
                    if(neighbour[0][1] == 0 && neighbour[1][1] == 1)
                        count++;
                    if(neighbour[1][1] == 0 && neighbour[2][1] == 1)
                        count++;
                    if(neighbour[2][1] == 0 && neighbour[2][2] == 1)
                        count++;
                    if(neighbour[2][2] == 0 && neighbour[2][3] == 1)
                        count++;
                    if(neighbour[2][3] == 0 && neighbour[1][3] == 1)
                        count++;
                    if(neighbour[1][3] == 0 && neighbour[0][3] == 1)
                        count++;
                    if(neighbour[0][3] == 0 && neighbour[0][2] == 1)
                        count++;
                    if(count != 1)
                        condition3 = true;
                }

                //P2*P4*P6 = 0 or Z0(P4) != 1
                if(neighbour[1][2] * neighbour[2][1] * neighbour[3][2] == 0)
                    condition4 = true;
                else
                {
                    count = 0;
                    if(neighbour[1][1] == 0 && neighbour[1][0] == 1)
                        count++;
                    if(neighbour[1][0] == 0 && neighbour[2][0] == 1)
                        count++;
                    if(neighbour[2][0] == 0 && neighbour[3][0] == 1)
                        count++;
                    if(neighbour[3][0] == 0 && neighbour[3][1] == 1)
                        count++;
                    if(neighbour[3][1] == 0 && neighbour[3][2] == 1)
                        count++;
                    if(neighbour[3][2] == 0 && neighbour[2][2] == 1)
                        count++;
                    if(neighbour[2][2] == 0 && neighbour[1][2] == 1)
                        count++;
                    if(neighbour[1][2] == 0 && neighbour[1][1] == 1)
                        count++;
                    if(count != 1)
                        condition4 = true;
                }

                if(condition1 && condition2 && condition3 && condition4)
                {
                    img.at<uchar>(i, j) = 0;
                    modified = true;
                }
                else
                    img.at<uchar>(i, j) = 255;

            } // for columns
        } // for rows
        img.copyTo(dst);
    } //  for while
}

运行结果

在这里插入图片描述

评论 4
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值