162. Find Peak Element

本文介绍了一种在给定数组中寻找峰值元素的算法,峰值元素定义为大于其邻居的元素。文章详细阐述了如何通过二分查找的方法,在O(log N)的时间复杂度内找到一个峰值元素的索引。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A peak element is an element that is greater than its neighbors.

Given an input array where num[i] ≠ num[i+1], find a peak element and return its index.

The array may contain multiple peaks, in that case return the index to any one of the peaks is fine.

You may imagine that num[-1] = num[n] = -∞.

For example, in array [1, 2, 3, 1], 3 is a peak element and your function should return the index number 2.

Note:

Your solution should be in logarithmic complexity.


摘自:https://leetcode.com/discuss/18107/o-logn-solution-javacode

This problem is similar to Local Minimum. And according to the given condition, num[i] != num[i+1], there must exist a O(logN) solution. So we use binary search for this problem.

  • If num[i-1] < num[i] > num[i+1], then num[i] is peak
  • If num[i-1] < num[i] < num[i+1], then num[i+1...n-1] must contains a peak
  • If num[i-1] > num[i] > num[i+1], then num[0...i-1] must contains a peak
  • If num[i-1] > num[i] < num[i+1], then both sides have peak (n is num.length)

public int findPeakElement(int[] num) 
    {    
        return helper(num,0,num.length-1);
    }

    public int helper(int[] num,int start,int end)
    {
        if(start == end)
            return start;
        else if(start+1 == end)
        {
            if(num[start] > num[end]) 
                return start;
            return end;
        }
        else
        {
    
            int m = (start+end)/2;
    
            if(num[m] > num[m-1] && num[m] > num[m+1]){
    
                return m;
    
            }else if(num[m-1] > num[m] && num[m] > num[m+1]){
    
                return helper(num,start,m-1);
    
            }else{
    
                return helper(num,m+1,end);
    
            }
        }
    }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值