均方误差(MSE):用于回归问题,计算预测值与真实值之间的平方差的平均值。MSE对较大的误差更加敏感,因此适合于需要惩罚大误差的场景。
MSE
=
1
n
∑
i
=
1
n
(
y
i
−
y
^
i
)
2
\text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2
MSE=n1i=1∑n(yi−y^i)2
平均绝对误差(MAE):同样用于回归问题,计算预测值与真实值之间的绝对差的平均值。MAE对异常值的敏感性较低,适合于对所有误差一视同仁的情况。
MAE
=
1
n
∑
i
=
1
n
∣
y
i
−
y
^
i
∣
\text{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|
MAE=n1i=1∑n∣yi−y^i∣