题目
解题思路
编辑距离是一个经典的动态规划问题,我们可以通过以下步骤解决:
- 创建一个 ( m + 1 ) × ( n + 1 ) (m+1) \times (n+1) (m+1)×(n+1) 的二维数组 d p dp dp,其中 m m m 和 n n n 分别是两个字符串的长度
- d p [ i ] [ j ] dp[i][j] dp[i][j] 表示字符串1的前 i i i 个字符转换到字符串2的前 j j j 个字符所需的最小操作数
- 对于每个位置
(
i
,
j
)
(i,j)
(i,j),我们有三种可能的操作:
- 替换: d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + ( s 1 [ i − 1 ] ≠ s 2 [ j − 1 ] ) dp[i][j] = dp[i-1][j-1] + (s1[i-1] \neq s2[j-1]) dp[i][j]=dp[i−1][j−1]+(s1[i−1]=s2[j−1])
- 删除: d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + 1 dp[i][j] = dp[i-1][j] + 1 dp[i][j]=dp[i−1][j]+1
- 插入: d p [ i ] [ j ] = d p [ i ] [ j − 1 ] + 1 dp[i][j] = dp[i][j-1] + 1 dp[i][j]=dp[i][j−1]+1
代码
#include <iostream>
#include <string>
#include <vector>
using namespace std;
int minDistance(string word1, string word2) {
int m = word1.length();
int n = word2.length();
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
// 初始化边界条件
for (int i = 0; i <= m; i++) {
dp[i][0] = i;
}
for (int j = 0; j <= n; j++) {
dp[0][j] = j;
}
// 填充dp数组
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (word1[i-1] == word2[j-1]) {
dp[i][j] = dp[i-1][j-1];
} else {
dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1])) + 1;
}
}
}
return dp[m][n];
}
int main() {
string word1, word2;
getline(cin, word1);
getline(cin, word2);
cout << minDistance(word1, word2) << endl;
return 0;
}
import java.util.Scanner;
public class Main {
public static int minDistance(String word1, String word2) {
int m = word1.length();
int n = word2.length();
int[][] dp = new int[m + 1][n + 1];
// 初始化边界条件
for (int i = 0; i <= m; i++) {
dp[i][0] = i;
}
for (int j = 0; j <= n; j++) {
dp[0][j] = j;
}
// 填充dp数组
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (word1.charAt(i-1) == word2.charAt(j-1)) {
dp[i][j] = dp[i-1][j-1];
} else {
dp[i][j] = Math.min(dp[i-1][j-1],
Math.min(dp[i-1][j], dp[i][j-1])) + 1;
}
}
}
return dp[m][n];
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
String word1 = sc.nextLine();
String word2 = sc.nextLine();
System.out.println(minDistance(word1, word2));
sc.close();
}
}
def min_distance(word1, word2):
m, n = len(word1), len(word2)
dp = [[0] * (n + 1) for _ in range(m + 1)]
# 初始化边界条件
for i in range(m + 1):
dp[i][0] = i
for j in range(n + 1):
dp[0][j] = j
# 填充dp数组
for i in range(1, m + 1):
for j in range(1, n + 1):
if word1[i-1] == word2[j-1]:
dp[i][j] = dp[i-1][j-1]
else:
dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1
return dp[m][n]
word1 = input()
word2 = input()
print(min_distance(word1, word2))
算法及复杂度
- 算法:动态规划
- 时间复杂度: O ( m n ) \mathcal{O}(mn) O(mn),其中 m m m 和 n n n 是两个字符串的长度
- 空间复杂度: O ( m n ) \mathcal{O}(mn) O(mn),需要一个二维 d p dp dp 数组