思路:


#include <bits/stdc++.h>
using namespace std;
#define int long long
#define pb push_back
const int maxn = 1e6 + 5, inf = 1e9 + 5, maxm = 4e4 + 5, mod = 1e9 + 7, N = 1e6;
// int a[maxn], b[maxn];
int n, m;
string s;
int qpow(int a, int b){
int res = 1;
while(b){
if(b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
int __lcm(int a, int b){
int g = __gcd(a, b);
return a * b / g;
}
void solve()
{
int res = 0;
int a, b, c, p, q, r, x, y, z;
cin >> b >> q >> y >> c >> r >> z;
int b2 = b + (y - 1) * q, c2 = c + (z - 1) * r;
if(!(b <= c && b2 >= c2 && r % q == 0 && (c - b) % q == 0)){
cout << "0\n";
return;
}
if(b > c - r || b2 < c2 + r){
cout << "-1\n";
return;
}
for(int i = 1; i * i <= r; i++){
if(r % i == 0){
if(__lcm(i, q) == r)
res = (res + (r / i) * (r / i) % mod) % mod;
}
if(r / i != i && __lcm(r / i, q) == r){
int p = r / i;
res = (res + r / p * (r / p) % mod) % mod;
}
}
cout << res << '\n';
}
signed main(){
ios::sync_with_stdio(0);
cin.tie(0);
// fac[0] = 1;
// for(int i = 1; i <= N; i++){
// fac[i] = fac[i - 1] * i % mod;
// }
int T = 1;
cin >> T;
while (T--)
{
solve();
}
return 0;
}
该篇文章是关于使用C++编写的程序,实现了中国剩余定理的求解,主要涉及`__gcd`和`__lcm`函数,用于计算最大公约数和最小公倍数,解决特定类型的数学问题。

被折叠的 条评论
为什么被折叠?



