leetcode001、两数之和【Java】

本文讨论了如何解决LeetCode上的两数之和问题,通过对比个人解决方案和官方提供的两种方法,强调了使用哈希表来降低时间复杂度至O(N)的重要性。个人解决方案直接使用哈希表,而官方的哈希表方法同样能在遍历一次数组的同时找到答案,提高了效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 的那 两个 整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。

示例:

示例 1:
输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。

示例 2:
输入:nums = [3,2,4], target = 6
输出:[1,2]

示例 3:
输入:nums = [3,3], target = 6
输出:[0,1]

提示:

2 <= nums.length <= 103
-109 <= nums[i] <= 109
-109 <= target <= 109
只会存在一个有效答案

个人解决方案

class Solution {
    public int[] twoSum(int[] nums, int target) {
        Map<Integer, Integer> map = new HashMap<Integer, Integer>();
        int[] result = new int[2];
        for (int i=0;i<nums.length;i++){
            if (map.containsKey(target-nums[i])){
                result[0] = map.get(target-nums[i]);
                result[1] = i;
                return result;
            }else {
                map.put(nums[i],i);
            }
        }
        return result;
    }
}

LeetCode评价

解答成功:
执行耗时:0 ms,击败了100.00% 的Java用户
内存消耗:38.2 MB,击败了98.50% 的Java用户

官方解决方案

方法一:暴力枚举
思路及算法

最容易想到的方法是枚举数组中的每一个数 x,寻找数组中是否存在 target - x。

当我们使用遍历整个数组的方式寻找 target - x 时,需要注意到每一个位于 x 之前的元素都已经和 x 匹配过,因此不需要再进行匹配。而每一个元素不能被使用两次,所以我们只需要在 x 后面的元素中寻找 target - x。

class Solution {
    public int[] twoSum(int[] nums, int target) {
        int n = nums.length;
        for (int i = 0; i < n; ++i) {
            for (int j = i + 1; j < n; ++j) {
                if (nums[i] + nums[j] == target) {
                    return new int[]{i, j};
                }
            }
        }
        return new int[0];
    }
}

复杂度分析

时间复杂度:O(N^2),其中 N 是数组中的元素数量。最坏情况下数组中任意两个数都要被匹配一次。

空间复杂度:O(1)。

方法二:哈希表
思路及算法

注意到方法一的时间复杂度较高的原因是寻找 target - x 的时间复杂度过高。因此,我们需要一种更优秀的方法,能够快速寻找数组中是否存在目标元素。如果存在,我们需要找出它的索引。

使用哈希表,可以将寻找 target - x 的时间复杂度降低到从 O(N) 降低到 O(1)。

这样我们创建一个哈希表,对于每一个 x,我们首先查询哈希表中是否存在 target - x,然后将 x 插入到哈希表中,即可保证不会让 x 和自己匹配。

class Solution {
    public int[] twoSum(int[] nums, int target) {
        Map<Integer, Integer> hashtable = new HashMap<Integer, Integer>();
        for (int i = 0; i < nums.length; ++i) {
            if (hashtable.containsKey(target - nums[i])) {
                return new int[]{hashtable.get(target - nums[i]), i};
            }
            hashtable.put(nums[i], i);
        }
        return new int[0];
    }
}

复杂度分析

时间复杂度:O(N)O(N),其中 NN 是数组中的元素数量。对于每一个元素 x,我们可以 O(1)O(1) 地寻找 target - x。

空间复杂度:O(N)O(N),其中 NN 是数组中的元素数量。主要为哈希表的开销。

官方声明
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/two-sum/solution/liang-shu-zhi-he-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夜月光雾

老板,请我喝杯咖啡吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值