kruskal模板题;
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
int n, m;
struct Edge{
int u, v, w;
void addEdge(int n_u = 0, int n_v = 0, int n_w = 0){
u = n_u;
v = n_v;
w = n_w;
}
}edge;
vector<Edge> evec;
int p[1005], cnt;
bool cmp(const Edge &a, const Edge &b){
return a.w < b.w;
}
void K_init(){
cnt = 0; //初始化cnt ,cnt记录建立了多少条边;
for(int i = 0; i < n; ++i)
p[i] = i;
sort(evec.begin(), evec.end(), cmp);
}
int Find(int x){
return x == p[x] ? x : p[x] = Find(p[x]); //路径压缩优化;
}
void Union(int x, int y){
int xRoot = Find(x);
int yRoot = Find(y);
p[xRoot] = yRoot;
}
int Kruskal(){
K_init();
int ans = 0;
for(int i = 0; i < m; ++i){
if(Find(evec[i].u) != Find(evec[i].v)){
ans += evec[i].w;
Union(evec[i].u, evec[i].v);
cnt++;
}
}
return ans;
}
int main()
{
while(scanf("%d%d", &n, &m) != EOF){
int u, v, w;
for(int i = 0; i < m; ++i){
scanf("%d%d%d", &u, &v, &w);
edge.addEdge(u, v, w);
evec.push_back(edge);
}
int ans = Kruskal();
if(cnt != n-1)
printf("impossible\n");
else
printf("%d\n", ans);
printf("\n");
evec.clear();
}
return 0;
}
当然也可以不使用STL,这份模板可能理解上难度大一些,加上一些注释;
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
int n, m;
int u[10005], v[10005], w[10005], r[10005]; // r间接排序;
int p[1005], cnt;
bool cmp(const int a, const int b){
return w[a] < w[b];
}
void K_init(){
cnt = 0; //初始化cnt ,cnt记录建立了多少条边;
for(int i = 0; i < n; ++i) //初始化并查集;
p[i] = i;
for(int i = 0; i < m; ++i) //初始化边序号;
r[i] = i;
sort(r, r+m, cmp); //间接排序;
}
int Find(int x){
return x == p[x] ? x : p[x] = Find(p[x]); //路径压缩优化;
}
int Kruskal(){
K_init();
int ans = 0;
for(int i = 0; i < m; ++i){
int e = r[i];
int x = Find(u[e]);
int y = Find(v[e]);
if(x != y){ //如果在不同集合,合并;
ans += w[e];
p[x] = y;
cnt++;
}
}
return ans;
}
int main()
{
while(scanf("%d%d", &n, &m) != EOF){
for(int i = 0; i < m; ++i){
scanf("%d%d%d", &u[i], &v[i], &w[i]);
}
int ans = Kruskal();
if(cnt != n-1)
printf("impossible\n");
else
printf("%d\n", ans);
printf("\n");
}
return 0;
}