Spark SQL——DataFrame

Spark SQL自1.0版本起提供,旨在替代Hive和Shark,支持多种数据源如Hive、RDD等,具备内存列存储、字节码生成等性能优化技术。DataFrame作为Spark SQL的核心,是分布式列式数据集,可从多种来源构建,适用于结构化数据处理。本文详细介绍了DataFrame的创建、使用及常见操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简介

1、介绍

  • Spark 1.0版本开始,推出了Spark SQL。其实最早使用的,都是Hadoop自己的Hive查询引擎;但是后来Spark提供了Shark;再后来Shark被淘汰,推出了Spark SQL。Shark的性能比Hive就要高出一个数量级,而Spark SQL的性能又比Shark高出一个数量级。
  • 最早来说,Hive的诞生,主要是因为要让那些不熟悉Java,无法深入进行MapReduce编程的数据分析师,能够使用他们熟悉的关系型数据库的SQL模型,来操作HDFS上的数据。因此推出了Hive。Hive底层基于MapReduce实现SQL功能,能够让数据分析人员,以及数据开发人员,方便的使用Hive进行数据仓库的建模和建设,然后使用SQL模型针对数据仓库中的数据进行统计和分析。但是Hive有个致命的缺陷,就是它的底层基于MapReduce,而MapReduce的shuffle又是基于磁盘的,因此导致Hive的性能异常低下。经常出现复杂的SQL ETL,要运行数个小时,甚至数十个小时的情况。
    后来,Spark推出了Shark,Shark与Hive实际上还是紧密关联的,Shark底层很多东西还是依赖于Hive,但是修改了内存管理、物理计划、执行三个模块,底层使用Spark的基于内存的计算模型,从而让性能比Hive提升了数倍到上百倍。
  • 然而,Shark还是它的问题所在,Shark底层依赖了Hive的语法解析器、查询优化器等组件,因此对于其性能的提升还是造成了制约。所以后来Spark团队决定,完全抛弃Shark,推出了全新的Spark SQL项目。Spark SQL就不只是针对Hive中的数据了,而且可以支持其他很多数据源的查询。

2、特点

  • )支持多种数据源:Hive、RDD、Parquet、JSON、JDBC等。
  • 2)多种性能优化技术:in-memory columnar storage、byte-code generation、cost model动态评估等。
  • 1)组件扩展性:对于SQL的语法解析器、分析器以及优化器,用户都可以自己重新开发,并且动态扩展。

3、性能优化技术

1)内存列存储(in-memory columnar storage)
内存列存储意味着,Spark SQL的数据,不是使用Java对象的方式来进行存储,而是使用面向列的内存存储的方式来进行存储。也就是说,每一列,作为一个数据存储的单位。从而大大优化了内存使用的效率。采用了内存列存储之后,减少了对内存的消耗,也就避免了gc大量数据的性能开销。
2)字节码生成技术(byte-code generation)
Spark SQL在其catalyst模块的expressions中增加了codegen模块,对于SQL语句中的计算表达式,比如select num + num from t这种的sql,就可以使用动态字节码生成技术来优化其性能。
3)Scala代码编写的优化
对于Scala代码编写中,可能会造成较大性能开销的地方,自己重写,使用更加复杂的方式,来获取更好的性能。比如Option样例类、for循环、map/filter/foreach等高阶函数,以及不可变对象,都改成了用null、while循环等来实现,并且重用可变的对象。

二、DataFrame的使用

1、 Spark SQL and DataFrame引言

  • Spark SQL是Spark中的一个模块,主要用于进行结构化数据的处理。它提供的最核心的编程抽象,就是DataFrame。同时Spark SQL还可以作为分布式的SQL查询引擎。Spark SQL最重要的功能之一,就是从Hive中查询数据。
  • DataFrame,可以理解为是,以列的形式组织的,分布式的数据集合。它其实和关系型数据库中的表非常类似,但是底层做了很多的优化。DataFrame可以通过很多来源进行构建,包括:结构化的数据文件,Hive中的表,外部的关系型数据库,以及RDD。

2、SQLContext

要使用Spark SQL,首先就得创建一个创建一个SQLContext对象,或者是它的子类的对象,比如HiveContext的对象。

代码示例

1)java版本

JavaSparkContext sc = ...; 
SQLContext sqlContext = new SQLContext(sc);

2)scala版本

val sc: SparkContext = ... 
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._

3、HiveContext

  • 除了基本的SQLContext以外,还可以使用它的子类——HiveContext。HiveContext的功能除了包含SQLContext提供的所有功能之外,还包括了额外的专门针对Hive的一些功能。这些额外功能包括:使用HiveQL语法来编写和执行SQL,使用Hive中的UDF函数,从Hive表中读取数据。
  • 要使用HiveContext,就必须预先安装好Hive,SQLContext支持的数据源,HiveContext也同样支持——而不只是支持Hive。对于Spark 1.3.x以上的版本,都推荐使用HiveContext,因为其功能更加丰富和完善。
  • Spark SQL还支持用spark.sql.dialect参数设置SQL的方言。使用SQLContext的setConf()即可进行设置。对于SQLContext,它只支持“sql”一种方言。对于HiveContext,它默认的方言是“hiveql”。

4、创建DataFrame

1)java版本

package cn.spark.study.sql;

import org.apache.spark.SparkConf;
import org.apache
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值