文章大纲
简介
其实一说到机器学习的数据集划分,我们往往都知道,有训练集、测试集。验证集、调优集一般来说不太常用。这篇博客来逐一探讨一下。
训练集、验证集和测试集这三个名词在机器学习领域极其常见,但很多人并不是特别清楚,尤其是后两个经常被人混用。
在有监督(supervise)的机器学习中,数据集常被分成2~3个,即:训练集(train set),验证集(validation set),测试集(test set)。
Ripley, B.D(1996)在他的经典专著Pattern Recognition and Neural Networks中给出了这三个词的定义。
Training set: A set of examples used for learning, which is to fit the parameters [i.e., weights] of the classifier.
Validation set: A set of examples used to tune the parameters [i.e., architecture, not weights] of a classifier, for example to choose the number of hidden units in a neural network.
Test set: A set