《大数据机器学习实践探索》 ---- 特征工程:基于spark 的缺失值处理


缺失值的定义

缺失值是指粗糙数据中由于缺少信息而造成的数据的聚类、分组、删失或截断。它指的是现有数据集中某个或某些属性的值是不完全的。

Little和Rubin(1987)把数据缺失的机制分为三类:

1)完全随机缺失(missing completely at random, MCAR):所缺失的数据是完全随机的,缺失发生的概率既与已观察到的数据无关,也与未观察到的数据无关。这是一种比较理想的情况。

2)随机缺失(missing at random, MAR):数据的缺失不是完全随机的。缺失数据发生的概率与所观察到的变量是有关的,而与未观察到的数据的特征是无关的。这是一个比较严重的问题,在这种情况下,我们需要进一步检查数据收集过程,并尝试了解数据为什么丢失。例如,如果在一项问卷调查中,大多数人没有回答某个问题,他们为什么这么做,是问题不清楚吗?

3)不可忽略的缺失(non-ignorable missing ,NIM),亦称为非随机缺失(not missing at random, NMAR),也有研究者将其称为MNAR(missing not at random)。缺失数据不仅依赖于其它变量,又依赖于变量本身,这种缺失即为不可忽略的缺失。

本文针对spark 机器学习过程中,针对数据框

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shiter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值