简介

机器学习强调三个关键词:算法、经验、性能,其处理过程如上图所示。在数据的基础上,通过算法构建出模型并对模型进行评估。评估的性能如果达到要求,就用该模型来测试其他的数据;如果达不到要求,就要调整算法来重新建立模型,再次进行评估。如此循环往复,最终获得满意的经验来处理其他的数据。机器学习技术和方法已经被成功应用到多个领域,比如个性推荐系统,金融反欺诈,语音识别,自然语言处理和机器翻译,模式识别,智能控制等。
在大数据上进行机器学习,需要处理全量数据并进行大量的迭代计算,这要求机器学习平台具备强大的处理能力。Spark 立足于内存计算,天然的适应于迭代式计算。即便如此,对于普通开发者来说,实现一个分布式机器学习算法仍然是一件极具挑战的事情。
幸运的是,Spark提供了一个基于海量数据的机器学习库,它提供了常用机器学习算法的分布式实现,开发者只需要有 Spark 基础并且了解机器学习算法的原理,以及方法相关参数的含义,就可以轻松的通过调用相应的 API 来实现基于海量数据的机器学习过程。其次,Spark-Shell的即席查询也是一个关键。算法工程师可以边写代码边运行,边看结果。spark提供的各种高效的工具正使得机器学习过程更加直观便捷。比如通过sample函数,可以非常方便的进行抽样。当然,Spark发展到后面,拥有了实时批计算,批处理,算法库,SQL、流计算等模块等,基本可以看做是全平台的系统。把机器学习作

订阅专栏 解锁全文
803

被折叠的 条评论
为什么被折叠?



