Spark 执行过程以及相应概念解释

本文深入剖析Spark作业的执行过程,从Client提交作业到Master开始,讲解Master如何管理Worker,启动Driver和Executor。详细阐述Driver、Executor、Stage和Task的角色与交互,以及DAGScheduler如何构建Stage,TaskScheduler如何分配Task执行。还介绍了窄依赖、宽依赖以及缓存管理在作业执行中的作用。

相关概念

Client:客户端进程,负责提交作业到Master。

Master:Standalone模式中主控节点,负责接收Client提交的作业,管理Worker,并命令Worker启动Driver和Executor。

Worker:Standalone模式中slave节点上的守护进程,负责管理本节点的资源定期向Master汇报心跳,接收Master的命令,启动Driver和Executor。

Driver: 一个Spark作业运行时包括一个Driver进程,也是作业的主进程,负责作业的解析、生成Stage并调度Task到Executor上。包括DAGScheduler,TaskScheduler。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值