pandas中数据替换和部分替换df.replace(to_replace, value)

全部替换

df.replace(to_replace, value) 前面是需要替换的值,后面是替换后的值。如 df.replace('12589‘,’0‘)这样Python就会搜索整个DataFrame并将文档中所有的12589替换成了0(要注意这样的操作并没有改变文档的源数据,要改变源数据需要使用参数inplace = True,或者改为赋值的方式),df.replace('12589','0',inplace=True)

某一列替换:

 df['colum1'].replace('12589','0',inplace=True)

同理:只想替换部分数据的时候并且要写入源数据就需要指定inplace。

替换指定的某个或指定的多个数值(用字典的形式)

df.replace('12589':'0',9999:500,inplace=True)

字典里的建作为原值,字典里的值作为替换的新值。

或者使用列表的形式进行替换:df.replace(['12589','0'],[9999,500]) ,将字符串12589替换成字符0,将整数值9999替换成500

还可以使用正则表达式的方式去处理。

df.replace(['[A-Z','max'],regex=True,inplace=True)只要包含有大写的英文字母的数据都被替换为max了,如果我们要写入源数据还需要指定inplace  = True。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值