I has configured a spark cluster in standalone mode. I can see that both workers are running, but when I start a spark-shell I have this problem: Configuration of spark cluster is automatic.
val lines=sc.parallelize(List(1,2,3,4))
this work ok the new rdd has created but when I start the next task
lines.take(2).foreach(println)
I have this error that i cant solve:
Output:
16/02/18 10:27:02 INFO DAGScheduler: Got job 0 (take at :24) with 1 output partitions
16/02/18 10:27:02 INFO DAGScheduler: Final stage: ResultStage 0 (take at :24)
16/02/18 10:27:02 INFO DAGScheduler: Parents of final stage: List()
16/02/18 10:27:02 INFO DAGScheduler: Missing parents: List()
16/02/18 10:27:02 INFO DAGScheduler: Submitting ResultStage 0 (ParallelCollectionRDD[0] at parallelize at :21), which has no missing parents
16/02/18 10:27:03 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 1288.0 B, free 1288.0 B)
16/02/18 10:27:04 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 856.0 B, free 2.1 KB)
A minute and a half later:
16/02/18 10:28:43 WARN NettyRpcEndpointRef: Error sending message [message = RemoveExecutor(0,java.io.IOException: Failed to create directory /srv/spark/work/app-20160218102438-0000/0)] in 2 attempts org.apache.spark.rpc.RpcTimeoutException:
Cannot receive any reply in 120 seconds. This timeout is controlled by spark.rpc.askTimeout
at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:48)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:33)
at scala.util.Failure$$anonfun$recover$1.apply(Try.scala:185)
at scala.util.Try$.apply(Try.scala:161)
at scala.util.Failure.recover(Try.scala:185)
at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
at org.spark-project.guava.util.concurrent.MoreExecutors$SameThreadExecutorService.execute(MoreExecutors.java:293)
at scala.concurrent.impl.ExecutionContextImpl$$anon$1.execute(ExecutionContextImpl.scala:133)
at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
at scala.concurrent.Promise$class.complete(Promise.scala:55)
at scala.concurrent.impl.Promise$DefaultPromise.complete(Promise.scala:153)
at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:235)
at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:235)
at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.processBatch$1(Future.scala:643)
at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.apply$mcV$sp(Future.scala:658)
at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.apply(Future.scala:635)
at scala.concurrent.Future$InternalCallbackExecutor$Batch$$anonfun$run$1.apply(Future.scala:635)
at scala.concurrent.BlockContext$.withBlockContext(BlockContext.scala:72)
at scala.concurrent.Future$InternalCallbackExecutor$Batch.run(Future.scala:634)
at scala.concurrent.Future$InternalCallbackExecutor$.scala$concurrent$Future$InternalCallbackExecutor$$unbatchedExecute(Future.scala:694)
at scala.concurrent.Future$InternalCallbackExecutor$.execute(Future.scala:685)
at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
at scala.concurrent.Promise$class.tryFailure(Promise.scala:112)
at scala.concurrent.impl.Promise$DefaultPromise.tryFailure(Promise.scala:153)
at org.apache.spark.rpc.netty.NettyRpcEnv$$anon$1.run(NettyRpcEnv.scala:241)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:180)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.util.concurrent.TimeoutException: Cannot receive any reply in 120 seconds
at org.apache.spark.rpc.netty.NettyRpcEnv$$anon$1.run(NettyRpcEnv.scala:242) ... 7 more
In one worker, I can see this log error :
Invalid maximum head size: -Xmxm0M could not create JVM
and also I can see a some problem I think that is related to a problem with binding a port or something like this.