本次学习图神经网络的一般过程,直接放代码,对比MLP, GCN和GAT在cora数据集上做节点分类的效果:
from torch_geometric.datasets import Planetoid
from torch_geometric.transforms import NormalizeFeatures
from torch_geometric.nn import GCNConv, GATConv
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
import torch
from torch.nn import Linear
import torch.nn.functional as F
dataset = Planetoid(root='dataset', name='Cora', transform=NormalizeFeatures())
data = dataset[0]
def visualize(h, color, fig_name):
z = TSNE(n_components=2).fit_transform(out.detach().cpu().numpy())
plt.figure(figsize=(10,10))
plt.xticks([])
plt.yticks([])
plt.scatter(z[:, 0], z[:, 1], s=70, c=color, cmap="Set2")
plt.savefig(fig_name)
class MLP(torch.nn.Module):
def __init__(self, hidden_channels):
super