下面是我对该算法的实现:
public class Kmeans {
private int K;
private int colsNum;
private int rowsNum;
private double[][] kMedians=null;
private double[][]myFeatures=null;
private HashMap<Integer,Integer> map=new HashMap<Integer, Integer>();
public Kmeans() {
}
/*
* Input double[numIns][numAtt] features, int K
* Output double[K][numAtt] clusterCenters, int[numIns] clusterIndex
*
* clusterCenters[k] should store the kth cluster center
* clusterIndex[i] should store the cluster index which the ith sample belongs to
*/
public void train(double[][] features, int K, double[][] clusterCenters, int[] clusterIndex) {
this.colsNum=features[0].length;
this.rowsNum=features.length;
this.kMedians=new double[K][colsNum];
this.myFeatures=features.clone();
this.K=K;
preHandle();
init();
setCluster();
while(true){
reSetMedian();
if(setCluster())
break;
}
features=myFeatures.clone();
for(int i=0;i<kMedians.length;i++){
for(int j=0;j<kMedians[0].length;j++)
clusterCenters[i][j]=kMedians[i][j];
}
for(int i=0;i<rowsNum;i++){
clusterIndex[i]=map.get(i);
}
kMedians=null;
myFeatures=null;
map.clear();
map=null;
}
public void preHandle(){//对数据进行预处理,替换掉NaN型数据
for(int i=0;i<myFeatures.length;i++){
double line[]=myFeatures[i];
for(int j=0;j<line.length;j++){
if(line[j]!=line[j]){
myFeatures[i][j]=getAverage(j);
}
}
}
}
public double getAverage(int attr){
double sum=0;
int k=0;
for(int i=0;i<rowsNum;i++){
double []row=myFeatures[i];
if(row[attr]==row[attr]){
sum+=row[attr];
k++;
}
}
return sum*1.0/k;
}
public boolean setCluster(){
boolean flag=true;
for(int i=0;i<rowsNum;i++){
double []row=myFeatures[i];
double []distances=new double[kMedians.length];
for(int j=0;j<kMedians.length;j++){
distances[j]=computeDistance(row, kMedians[j]);
}
int minIndex=0;
double min=Double.MAX_VALUE;
for(int j=0;j<distances.length;j++){
if(distances[j]<min){
minIndex=j;
min=distances[j];
}
}
int oldCluster=-1;
if(map.get(i)!=null)
oldCluster=map.get(i);
if(minIndex!=oldCluster)
flag=false;
map.put(i,minIndex);
}
return flag;
}
public void reSetMedian(){
double [][]sum=new double[K][colsNum];
int []num=new int[K];
Arrays.fill(num,0);
for(int i=0;i<K;i++)
for(int j=0;j<colsNum;j++)
sum[i][j]=0;
Iterator<Entry<Integer, Integer>> ite=map.entrySet().iterator();
while(ite.hasNext()){
Entry<Integer,Integer> entry=ite.next();
int rowNum=entry.getKey();
int clusterNum=entry.getValue();
num[clusterNum]++;
double []row=Arrays.copyOf(myFeatures[rowNum],colsNum);
for(int i=0;i<colsNum;i++){
sum[clusterNum][i]+=row[i];
}
}
for(int i=0;i<K;i++){
for(int j=0;j<colsNum;j++){
double ave=sum[i][j]*1.0/num[i];
kMedians[i][j]=ave;
}
}
}
public double computeDistance(double[] row,double[] median){
double sum=0;
for(int i=0;i<colsNum;i++){
sum+=Math.pow(row[i]-median[i],2);
}
return sum;
}
public void init(){
int index=0,i;
HashSet<Integer> rows=new HashSet<Integer>();
while(index<K){
int row=(int)(Math.random()*rowsNum);
if(rows.contains(row))
continue;
double []tempRow=myFeatures[row];
boolean flag1=true;
for(i=0;i<K;i++){
double []temp=kMedians[i];
boolean flag2=false;
for(int j=0;j<colsNum;j++){
if(temp[j]!=tempRow[j])
flag2=true;
}
if(flag2==false)
flag1=false;
}
if(!flag1)
continue;
for(i=0;i<tempRow.length;i++){
if(tempRow[i]!=tempRow[i])
break;
}
if(i>=tempRow.length){
rows.add(row);
kMedians[index++]=Arrays.copyOf(myFeatures[row],colsNum);
}
}
rows.clear();
rows=null;
}
}