学习epoll机制

学习epoll机制

昨天在CU上看到epoll, 自己既然还从来没听说过. google了一下.

练习了一下, 太懒, 本来可以写的更好写. 以下是从
/**
 * http://blog.youkuaiyun.com/mote_li/archive/2004/12/08/209450.aspx
 */
修改的. 关键是学习他的epoll使用, 其它的就别了. 自己编译测试了一下, 感觉有点意思就share一下.

/**
 * 该文件名为epoll.c
 *
 * 该测试代码是从http://blog.youkuaiyun.com/mote_li/archive/2004/12/08/209450.aspx修改来的. 只供学习使用.
 *
 * 我的测试环境AS4U3
 * [gan@localhost ~]$ uname -r
 * 2.6.9-34.EL
 */

# include < sys/ types. h>
# include < sys/ socket . h>
# include < sys/ epoll. h>
# include < netinet/ in. h>
# include < arpa/ inet. h>
# include < fcntl. h>
# include < unistd. h>
# include < stdlib. h>
# include < errno . h>
# include < stdio. h>
# include < strings. h>

# include < pthread. h>
 

# define MAXLINE 1024
# define OPEN_MAX 100
# define LISTENQ 20
# define INFTIM 1000

# define LOCAL_IP "192.168.1.101" /* 修改为自己本地机器就可以测试了 */
# define SERV_PORT 5555

/**
 * thread task link
 */

struct task
{
  int fd; /* file descriptor */
  struct task * next; /* next task */
} ;

struct user_data
{
  int fd;
  unsigned int n_size;
  char line [ MAXLINE] ;
} ;

/* thread exec function */
void * readtask( void * args) ;
void * writetask( void * args) ;
 

/* declare epoll_event */
struct epoll_event ev, events[ 20] ;
int epfd;

pthread_mutex_t mutex; /* 线程安全使用 */
pthread_cond_t cond1; /* 线程条件等待使用 */

struct task * readhead = NULL ,
        * readtail = NULL ,
        * writehead = NULL ;

void setnonblocking( int sock)
{
  int opts;

  opts = fcntl( sock, F_GETFL) ;
  if ( opts< 0)
   {
     perror ( "fcntl(sock,GETFL)" ) ;
     exit ( 1) ; /* 其实这样做不怎么好, 最好自己做好出错处理的工作, 不光是进程退出就可以了 */
   }

  if ( fcntl( sock, F_SETFL, opts | O_NONBLOCK) < 0)
   {
    perror ( "fcntl(sock,SETFL,opts)" ) ;
    exit ( 1) ;
   }
}

int main( )
{
  int i, maxi, listenfd, connfd, sockfd, nfds;
  socklen_t clilen;
  pthread_t tid1, tid2;
  struct task * new_task= NULL ;
  struct user_data * rdata= NULL ;

  /* initialize the thread pool */
  pthread_mutex_init ( & mutex, NULL ) ;
  pthread_cond_init ( & cond1, NULL ) ;

   /* 创建线程, 最好做好错误处理工作, 自己也比较懒. 真正作东西千万别这样噢! */
  pthread_create ( & tid1, NULL , readtask, NULL ) ;
  pthread_create ( & tid2, NULL , readtask, NULL ) ;

   /* 生成用于处理accept的epoll专用的文件描述符
    * 以前从没用过
    *

Create a new epoll file descriptor by requesting the kernel allocate an event backing store dimensioned[n. 尺寸, 尺度, 维(数), 度(数), 元] for size descriptors. The size is not the maximum size of the backing store but just a hint to the kernel about how to dimension internal structures. The returned file descriptor will be used for all the subsequent calls to the epoll interface. The file descriptor returned by epoll_create must be closed by using POSIX::close.

When successful, epoll_create returns a positive integer identifying the descriptor. When an error occurs, epoll_create returns -1 and errno is set appropriately.

    *
    */

  epfd = epoll_create( 256) ;

  struct sockaddr_in clientaddr;
  struct sockaddr_in serveraddr;

  listenfd = socket ( AF_INET , SOCK_STREAM , 0) ;

  //把socket设置为非阻塞方式

  setnonblocking( listenfd) ;

   //设置与要处理的事件相关的文件描述符

  ev. data. fd = listenfd;

   //设置要处理的事件类型

  ev. events = EPOLLIN | EPOLLET;

  /*注册epoll事件

Control an epoll descriptor, $epfd, by requesting the operation op be performed on the target file descriptor, fd.

$epfd is an epoll descriptor returned from epoll_create.
$op is one of EPOLL_CTL_ADD, EPOLL_CTL_MOD or EPOLL_CTL_DEL.
$fd is the file desciptor to be watched.
$eventmask is a bitmask of events defined by EPOLLIN, EPOLLOUT, etc.

When successful, epoll_ctl returns 0. When an error occurs, epoll_ctl returns -1 and errno is set appropriately.
   */

  epoll_ctl( epfd, EPOLL_CTL_ADD, listenfd, & ev) ;

  bzero( & serveraddr, sizeof ( serveraddr) ) ;
  serveraddr. sin_family = AF_INET ;

  char * local_addr = LOCAL_IP;
  inet_aton( local_addr, & ( serveraddr. sin_addr) ) ;

  serveraddr. sin_port = htons ( SERV_PORT) ;
  bind ( listenfd, ( struct sockaddr * ) & serveraddr, sizeof ( serveraddr) ) ;
  listen ( listenfd, LISTENQ) ;

  maxi = 0;
  for ( ; ; )
   {
     /*等待epoll事件的发生

Wait for events on the epoll file descriptor $epfd.

$epfd is an epoll descriptor returned from epoll_create.
$maxevents is an integer specifying the maximum number of events to be returned.
$timeout is a timeout, in milliseconds

When successful, epoll_wait returns a reference to an array of events. Each event is a two element array, the first element being the file descriptor which triggered the event, and the second is the mask of event types triggered. For example, if epoll_wait returned the following data structure:

     */

     nfds = epoll_wait( epfd, events, 20, 500) ;

      //处理所发生的所有事件

     for ( i = 0; i < nfds; + + i)
      {
       if ( events[ i] . data. fd = = listenfd)
         {
         connfd = accept ( listenfd, ( struct sockaddr * ) & clientaddr, & clilen) ;
         if ( connfd < 0)
           {
          perror ( "connfd<0" ) ;
          exit ( 1) ;
           }

         setnonblocking( connfd) ;

         char * str = inet_ntoa( clientaddr. sin_addr) ;

         printf ( "connect_from >> %s /n" , str) ;

         ev. data. fd = connfd; //设置用于读操作的文件描述符

         ev. events = EPOLLIN | EPOLLET; //设置用于注测的读操作事件


           //注册ev

         epoll_ctl( epfd, EPOLL_CTL_ADD, connfd, & ev) ;
         }
       else if ( events[ i] . events & EPOLLIN)
         {
          printf ( "reading!/n" ) ;

          if ( ( sockfd = events[ i] . data. fd) < 0)
            continue ;

          new_task = ( struct task * ) malloc ( sizeof ( struct task) ) ;
          new_task- > fd = sockfd;
          new_task- > next = NULL ;

          pthread_mutex_lock ( & mutex) ; //添加新的读任务


          if ( readhead = = NULL )
             {
             readhead = new_task;
             readtail = new_task;
             }
          else
             {
             readtail- > next = new_task;
             readtail = new_task;
             }

              //唤醒所有等待cond1条件的线程

           pthread_cond_broadcast ( & cond1) ;
           pthread_mutex_unlock ( & mutex) ;
           }
        else if ( events[ i] . events & EPOLLOUT)
          {
           rdata = ( struct user_data * ) events[ i] . data. ptr;
           sockfd = rdata- > fd;

         printf ( "thread.%u Write data fd.%d len.%d data.%s /n"
        , ( uint32_t ) pthread_self( ) , sockfd, rdata- > n_size, rdata- > line ) ;

           write ( sockfd, rdata- > line , rdata- > n_size) ;
           close ( sockfd) ;

           free ( rdata) ;

           ev. data. fd = sockfd; //设置用于读操作的文件描述符

           ev. events = EPOLLIN | EPOLLET; //设置用于注测的读操作事件


              //修改sockfd上要处理的事件为EPOLIN

           epoll_ctl( epfd, EPOLL_CTL_MOD, sockfd, & ev) ;
           }
       }
   }
}

/**
 * thread exec function
 */

void * readtask( void * args)
{
  int fd = - 1;
  unsigned int n;

  //用于把读出来的数据传递出去

  struct user_data * data = NULL ;

  while ( 1)
   {
     pthread_mutex_lock ( & mutex) ;

      //等待到任务队列不为空

     while ( readhead = = NULL )
      {
       printf ( "thread.%u waiting, task is NULL ... /n" , ( uint32_t ) pthread_self( ) ) ;
       pthread_cond_wait ( & cond1, & mutex) ;
      }

      fd = readhead- > fd;

       //从任务队列取出一个读任务

      struct task * tmp = readhead;
      readhead = readhead- > next;
      free ( tmp) ;

      pthread_mutex_unlock ( & mutex) ;

      data = ( struct user_data * ) malloc ( sizeof ( struct user_data) ) ;
      data- > fd = fd;

      if ( ( n = read ( fd, data- > line , MAXLINE) ) < 0)
        {
        if ( errno = = ECONNRESET)
          {
           close ( fd) ;
          }
        else
          printf ( "readline error /n" ) ;

        if ( data ! = NULL )
           free ( data) ;
        }
      else if ( n = = 0)
       {
       close ( fd) ;
       printf ( "Client close connect!/n" ) ;
       if ( data ! = NULL )
             free ( data) ;
       }
     else
       {
       data- > n_size = n;

       printf ( "thread.%u read fd.%d len.%d data.%s /n"
        , ( uint32_t ) pthread_self( ) , fd, n, data- > line ) ;
        
       ev. data. ptr = data; //设置需要传递出去的数据

       ev. events = EPOLLOUT | EPOLLET; //设置用于注测的写操作事件


        //修改sockfd上要处理的事件为EPOLLOUT

       epoll_ctl( epfd, EPOLL_CTL_MOD, fd, & ev) ;
      }
   }
}


/**
 * 一个简单的Makefile
 */

all: epoll. c
        gcc - Wall - g - o epoll epoll. c - lpthread

clean:
        rm - f epoll


-----------------------------------------
测试环境很简单, 使用你的firefox, or IE 来访问该端口就可以了.

内容概要:本文深入探讨了多种高级格兰杰因果检验方法,包括非线性格兰杰因果检验、分位数格兰杰因果检验、混频格兰杰因果检验以及频域因果检验。每种方法都有其独特之处,适用于不同类型的时间序列数据。非线性格兰杰因果检验分为非参数方法、双变量和多元检验,能够在不假设数据分布的情况下处理复杂的关系。分位数格兰杰因果检验则关注不同分位数下的因果关系,尤其适合经济数据的研究。混频格兰杰因果检验解决了不同频率数据之间的因果关系分析问题,而频域因果检验则专注于不同频率成分下的因果关系。文中还提供了具体的Python和R代码示例,帮助读者理解和应用这些方法。 适合人群:从事时间序列分析、经济学、金融学等领域研究的专业人士,尤其是对非线性因果关系感兴趣的学者和技术人员。 使用场景及目标:①研究复杂非线性时间序列数据中的因果关系;②分析不同分位数下的经济变量因果关系;③处理不同频率数据的因果关系;④识别特定频率成分下的因果关系。通过这些方法,研究人员可以获得更全面、细致的因果关系洞察。 阅读建议:由于涉及较多数学公式和编程代码,建议读者具备一定的统计学和编程基础,特别是对时间序列分析有一定了解。同时,建议结合具体案例进行实践操作,以便更好地掌握这些方法的实际应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值