数据结构实验之图论一:基于邻接矩阵的广度优先搜索遍历
Time Limit: 1000MS
Memory Limit: 65536KB
Problem Description
给定一个无向连通图,顶点编号从0到n-1,用广度优先搜索(BFS)遍历,输出从某个顶点出发的遍历序列。(同一个结点的同层邻接点,节点编号小的优先遍历)
Input
输入第一行为整数n(0< n <100),表示数据的组数。
对于每组数据,第一行是三个整数k,m,t(0<k<100,0<m<(k-1)*k/2,0< t<k),表示有m条边,k个顶点,t为遍历的起始顶点。
下面的m行,每行是空格隔开的两个整数u,v,表示一条连接u,v顶点的无向边。
Output
输出有n行,对应n组输出,每行为用空格隔开的k个整数,对应一组数据,表示BFS的遍历结果。
Example Input
1 6 7 0 0 3 0 4 1 4 1 5 2 3 2 4 3 5
Example Output
0 3 4 2 5 1
#include <bits/stdc++.h>//c++万能头文件 using namespace std; int a[110][110], visited[110], result[110];//定义数组a为图的邻接矩阵, visited为标志数组,作用为检测节点是否已被访问,result为存放遍历得到的节点。 int p; void bfs(int t, int n)// t为从t节点开始遍历,n为及诶单的总个数。 { queue <int> m;//定义一个队列。 visited[t] = 1;//表示已访问节点赋值为1,表示已访问。 result[p++] = t;//遍历的得到节点放入数组result。 m.push(t);//将t放入队列头。 while(m.empty() == 0)//直到队列不为空。 { int v; v = m.front();//定义节点v为队列的头结点。之后将v的邻接节点全部遍历。 m.pop();//将队列头结点删除。 for(int i = 0; i < n; i++)//遍历全部节点,寻找v的邻接点 { if(visited[i] == 0 && a[v][i] == 1)//寻找节点i未被访问且i与v节点有边相连。 { visited[i] = 1;//节点i已被访问标志位1; result[p++] = i;//将v的邻接节点放入结果数组。 m.push(i);//v的邻接节点放入队列m中。 } } } } int main() { int k, m, t, n; cin >> n; memset(a, 0, sizeof(a)); memset(visited, 0, sizeof(visited)); while(n--) { p = 0; int x, y, i; cin >> k >> m >> t; for(i = 0; i < m; i++) { cin >> x >> y; a[x][y] = 1; a[y][x] = 1; } bfs(t, k); for(i = 0; i < p-1; i++) { cout << result[i] << " "; } cout << result[p-1] << endl; } return 0; }