1408121541-hd-Tian Ji -- The Horse Racing.cpp

                                        Problem F

                                                     Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other)
                                                                           Total Submission(s) : 6   Accepted Submission(s) : 3
                                                     Font: Times New Roman |Verdana | Georgia
                                                     Font Size: ←→

Problem Description

Here is a famous story in Chinese history.

"That was about 2300 years ago. General Tian Ji was a high official in the country Qi. He likes to play horse racing with the king and others."

"Both of Tian and the king have three horses in different classes, namely, regular, plus, and super. The rule is to have three rounds in a match; each of the horses must be used in one round. The winner of a single round takes two hundred silver dollars from the loser."

"Being the most powerful man in the country, the king has so nice horses that in each class his horse is better than Tian's. As a result, each time the king takes six hundred silver dollars from Tian."

"Tian Ji was not happy about that, until he met Sun Bin, one of the most famous generals in Chinese history. Using a little trick due to Sun, Tian Ji brought home two hundred silver dollars and such a grace in the next match."

"It was a rather simple trick. Using his regular class horse race against the super class from the king, they will certainly lose that round. But then his plus beat the king's regular, and his super beat the king's plus. What a simple trick. And how do you think of Tian Ji, the high ranked official in China?"



Were Tian Ji lives in nowadays, he will certainly laugh at himself. Even more, were he sitting in the ACM contest right now, he may discover that the horse racing problem can be simply viewed as finding the maximum matching in a bipartite graph. Draw Tian's horses on one side, and the king's horses on the other. Whenever one of Tian's horses can beat one from the king, we draw an edge between them, meaning we wish to establish this pair. Then, the problem of winning as many rounds as possible is just to find the maximum matching in this graph. If there are ties, the problem becomes more complicated, he needs to assign weights 0, 1, or -1 to all the possible edges, and find a maximum weighted perfect matching...

However, the horse racing problem is a very special case of bipartite matching. The graph is decided by the speed of the horses --- a vertex of higher speed always beat a vertex of lower speed. In this case, the weighted bipartite matching algorithm is a too advanced tool to deal with the problem.

In this problem, you are asked to write a program to solve this special case of matching problem.

Input

The input consists of up to 50 test cases. Each case starts with a positive integer n (n <= 1000) on the first line, which is the number of horses on each side. The next n integers on the second line are the speeds of Tian’s horses. Then the next n integers on the third line are the speeds of the king’s horses. The input ends with a line that has a single 0 after the last test case.

Output

For each input case, output a line containing a single number, which is the maximum money Tian Ji will get, in silver dollars.

Sample Input

3
92 83 71
95 87 74
2
20 20
20 20
2
20 19
22 18
0

Sample Output

200
0
0

 

 

题目大意

       田忌赛马。

 

错误原因

       我做了双重循环,想要找出田忌可以赢的最大次数,但是却忽略了一个问题。

错误代码

<span style="font-size:18px;">#include<stdio.h>
#include<algorithm>
using namespace std;
int a[1100],b[1100];
bool cmp(int a,int b)
{
    return a>b;
}
int main()
{
    int n;
    int i,j,k,sum;
    while(scanf("%d",&n),n)
    {
        for(i=0;i<n;i++)
            scanf("%d",&a[i]);
        for(i=0;i<n;i++)
            scanf("%d",&b[i]);
        sort(a,a+n,cmp);
        sort(b,b+n,cmp);
        sum=0;
        for(i=0;i<n;i++)
            for(j=0;j<n;j++)
            {
                if(a[i]>b[j]&&b[j]!=-1)
                {
                    sum++;
                    b[j]=-1;
                    a[i]=-1;
                    break;
                }
            }
        k=0;
        for(i=0;i<n&&a[i]!=-1;i++)
            for(j=0;j<n&&b[j]!=-1;j++)
                if(a[i]==b[j])
                {
                    a[i]=-1;
                    b[i]=-1;
                    k++;
                    break;
                }
        当数据为 2
                 96 80
                 96 70  的时候,输出结果是0,但是很显然正确答案应该是200
        我的代码会去先找可以赢的,但是却忽略了大局。这个思路行不通,
        可能模拟田忌赛马的思路走了 
        printf("%d-%d-%d ",sum,k,n-k-sum);
        printf("%d\n",200*(2*sum-n+k));
    }
    return 0;
}</span>


解题思路

       这是一道贪心题,田忌的思路就是贪心,我们可以模拟一下田忌的思路就OK了。千万要注意考虑到每种情况。

      先把a[] b[[]数组排序(我这里用的是从大到小)

1、如果田忌最快的马比齐王最快的马快,则比之

2、如果田忌最快的马比齐王最快的马慢,则用田最慢的马跟齐最快的马比  //这是贪心的第一步

3、如果田忌最快的马的速度与齐威王最快的马速度相等

3.1、如果田忌最慢的比齐威王最慢的快,则比之                         //这是贪心的第二步

3.2、如果田忌最慢的比齐威王最慢的慢,田忌慢VS齐王快

3.3、田忌最慢的与齐威王最慢的相等,田忌慢VS齐王快

正确代码

#include<stdio.h>
#include<algorithm>
using namespace std;
int a[1100],b[1100];
bool cmp(int a,int b)
{
    return a>b;
}
int main()
{
    int n;
    int i,j,k,sum;
    while(scanf("%d",&n),n)
    {
        for(i=0;i<n;i++)
            scanf("%d",&a[i]);
        for(i=0;i<n;i++)
            scanf("%d",&b[i]);
        sort(a,a+n,cmp);
        sort(b,b+n,cmp);
        sum=0;
        k=n;
        for(i=0,j=0;i<k;)
        {
            if(a[i]>b[j])         //如果田忌最快的马比齐王最快的马快,则比之
              {
                sum++;
                i++;
                j++;
            }
            else if(a[i]<b[j])    //如果田忌最快的马比齐王最快的马慢,则用田最慢的马跟齐最快的马比  
                                  //这是贪心的第一步
              {
                k--;
                j++;
                sum--;
            }
            else if(a[i]==b[j])   //如果田忌最快的马的速度与齐威王最快的马速度相等
              {
                if(a[k-1]>b[n-1])  //如果田忌最慢的比齐威王最慢的快,则比之 
                                  //这是贪心的第二步
                   {
                    sum++;
                    n--;
                    k--;
                }
                else 
                {
                    if(a[k-1]<b[j])    //如果田忌最慢的比齐威王最慢的慢,田忌慢VS齐王快
                       {
                        k--;
                        sum--;
                        j++;
                    }
                    else            //田忌最慢的与齐威王最慢的相等,田忌慢VS齐王快
                       {
                        k--;
                        j++;
                    }
                }
            }
        }
        printf("%d\n",sum*200);
    }
    return 0;
}



 

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值