SauceLabs + Selenium+ Nunit For Web Ui Test

本文介绍如何使用C#与Selenium WebDriver搭建自动化测试环境,并通过SauceLabs平台进行多浏览器并行测试。文章详细讲解了安装配置过程、SauceLabs的优势及如何在Jenkins中集成SauceLabs插件实现自动化测试。

Part I: about seting up the environment

1. I use C# language for writing test case.

2. Install Visual Studio 2015 like picture below:

这里写图片描述

3. Using NuGet on Visual Studio to install Nunit, selenium support and selenium webdriver three packages like picture below:

这里写图片描述

4. Until this step the environment is ok, you can start to write test cases.

5. If you do not know how to use selenium api and nunit . please buy related book or e-book to learn. no worry, it is easy to learn.

Part II : about using SauceLabs

1. SauceLabs instruction:

Saucelabs is a test platform it can support test moblie and Web UI and so on . it can support all kinds all language such as C# ,Java, Node.js, PHP, Python,Ruby.

2. Why we choose saucelabs to test ,the advantagesas below:

  • Saucelabs has all kinds of browsers it support run against multiple
    browers parallelly.
  • Saucelabs can run test cases fast only waste less time.
  • Integrating a CI platform with Sauce Labs through sauce plugins and you can use jenkins or Bamboo CI platform and so on.

3.What are kinds of test can we use saucelabs

In all , saucelabs can support two kinds of test. one is manual test,the others is Auto test.

3.1 Maual test picture:

这里写图片描述

3.2 Auto test picture:

这里写图片描述

4. Using saucelabs to start auto test what things are you need to know?

  • you need sig up a saucelab account. of course the free account what you sig up only have 90 minute to use.
  • you should choose one of language for write test case. such as C# ,Java, Node.js, PHP, Python,Ruby. you can choose one of them what you like .
  • write the username and accessKey of saucelabs account into your test code . I use C# language like below:
 desiredCapabilites.SetCapability("accessKey", "2f11bc66-e756-4785-896b-4c6aba92e75c");
 desiredCapabilites.SetCapability("username", "testlin_2016");

Part III : about run test case

1. Run test case throught jenkins

  • Firstly, install jenkins and new jenkins job for test cases .
  • Secondly install Sauce OnDemand Plugin on jenkins. about this you can follow the url below to install and configure on jenkins.
    (https://wiki.saucelabs.com/display/DOCS/Installing+and+Configuring+the+Sauce+OnDemand+Plugin+for+Jenkins,
    (https://wiki.saucelabs.com/display/DOCS/Configuring+Sauce+Connect+with+the+Jenkins+Plugin)
    please feel free , it is easy to do .
  • If you install and configure succeed.you can see the picture on jenkins job Configure like picture below:

这里写图片描述

  • Util now you can click the button to run test case like picture below:
    这里写图片描述

  • Of course, there is a good way that is set run time and use ant script to run your testcase on jenkins automatically.
    set time like picture below:
    这里写图片描述
    use ant script like picture below:
    这里写图片描述

  • At last you can write the username and accessKey of saucelabs account into your test code like below instead of above.

desiredCapabilites.SetCapability("username",Environment.GetEnvironmentVariable("SAUCE_USER_NAME"));
desiredCapabilites.SetCapability("accessKey", Environment.GetEnvironmentVariable("SAUCE_API_KEY"));

By the way if you do not know what are the SAUCE_USER_NAME and SAUCE_API_KEY .please go for this url below:
https://wiki.saucelabs.com/display/DOCS/Environment+Variables+Used+by+the+Jenkins+Plugin.

Part IV: Problems I meet

1. I can not access the svg element on web page.

solution: I use javascript in C#

public String GetEachAttributeName(IWebDriver driver, String objectString)
{
   IWebElement svgObject = driver.FindElement(By.Id("svgobj"));
IJavaScriptExecutor jsdriver = (IJavaScriptExecutor)driver;
String result = jsdriver.ExecuteScript(objectString, svgObject).ToString();
    return result;
 }
public String GetNameJsString(String firstElement, String secondelement)
{
  var getNameJsString = "var svg = arguments[0].contentDocument.getElementById('" + firstElement + "'),texts=svg.getElementsByTagName('" + secondelement + "');return texts[0].textContent;";
  return getNameJsString;
}

###2. Sometimes selenium can not find the element.
solution: use try … catch to deal with exception.

 public bool IsWebElementDisplayed(IWebElement driver, By selector)
{
   bool isDisplayedFlag = false;
   int loopCount = 0;
   int maxLoopCount = 8;
   while (!isDisplayedFlag && loopCount< maxLoopCount)
   {
      loopCount++;
      try
        {
          IWebElement element = driver.FindElement(selector);
          isDisplayedFlag = element.Displayed;
          Console.WriteLine("IsWebElementDisplayed loopCount:{0},isDisplayedFlag: {1}", loopCount, isDisplayedFlag);
           return isDisplayedFlag;
         }
        catch (StaleElementReferenceException)
          {
              Thread.Sleep(1000);
              return false;
          }
    }
    Console.WriteLine("IsWebElementDisplayed loopCount:{0},isDisplayedFlag: {1}", loopCount, isDisplayedFlag);
    return isDisplayedFlag;
}

In all , Web Ui test is easy to start. please no worry and you can follow this instruction step by step. good luck!

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合数据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建数据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的数据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部分,深入理解Koopman算子与RNN结合的建模范式,重点关注数据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统数据进行迁移验证,以掌握该方法的核心思想与工程应用技巧。
基于粒子群算法优化Kmeans聚类的居民用电行为分析研究(Matlb代码实现)内容概要:本文围绕基于粒子群算法(PSO)优化Kmeans聚类的居民用电行为分析展开研究,提出了一种结合智能优化算法与传统聚类方法的技术路径。通过使用粒子群算法优化Kmeans聚类的初始聚类中心,有效克服了传统Kmeans算法易陷入局部最优、对初始值敏感的问题,提升了聚类的稳定性和准确性。研究利用Matlab实现了该算法,并应用于居民用电数据的行为模式识别与分类,有助于精细化电力需求管理、用户画像构建及个性化用电服务设计。文档还提及相关应用场景如负荷预测、电力系统优化等,并提供了配套代码资源。; 适合人群:具备一定Matlab编程基础,从事电力系统、智能优化算法、数据分析等相关领域的研究人员或工程技术人员,尤其适合研究生及科研人员。; 使用场景及目标:①用于居民用电行为的高效聚类分析,挖掘典型用电模式;②提升Kmeans聚类算法的性能,避免局部最优问题;③为电力公司开展需求响应、负荷预测和用户分群管理提供技术支持;④作为智能优化算法与机器学习结合应用的教学与科研案例。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解PSO优化Kmeans的核心机制,关注参数设置对聚类效果的影响,并尝试将其应用于其他相似的数据聚类问题中,以加深理解和拓展应用能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值