Given two positive integers n and k, the binary string Sn is formed as follows:
S1 = “0”
Si = Si - 1 + “1” + reverse(invert(Si - 1)) for i > 1
Where + denotes the concatenation operation, reverse(x) returns the reversed string x, and invert(x) inverts all the bits in x (0 changes to 1 and 1 changes to 0).
For example, the first four strings in the above sequence are:
S1 = “0”
S2 = “011”
S3 = “0111001”
S4 = “011100110110001”
Return the kth bit in Sn. It is guaranteed that k is valid for the given n.
Example 1:
Input: n = 3, k = 1
Output: “0”
Explanation: S3 is “0111001”.
The 1st bit is “0”.
Example 2:
Input: n = 4, k = 11
Output: “1”
Explanation: S4 is “011100110110001”.
The 11th bit is “1”.
Constraints:
- 1 <= n <= 20
- 1 <= k <= 2n - 1
假设 k < length / 2 则 si[k] = si-1[k], 如果 k > length / 2 则 si[k] = invert(si-1[length - k + 1])
impl Solution {
fn rc(length: i32, k: i32, is_rev: bool) -> char {
if length == 1 {
if is_rev {
return '1';
}
return '0';
}
if k == length / 2 + 1 {
if is_rev {
return '0';
}
return '1';
}
if k < length / 2 + 1 {
return Solution::rc(length / 2, k, is_rev);
}
Solution::rc(length / 2, length - k + 1, !is_rev)
}
pub fn find_kth_bit(n: i32, k: i32) -> char {
let mut length = 0;
for _ in 0..n {
length = length * 2 + 1;
}
if length == 1 {
return '0';
}
if k == length / 2 + 1 {
return '1';
}
if k < length / 2 + 1 {
return Solution::rc(length / 2, k, false);
}
Solution::rc(length / 2, length - k + 1, true)
}
}

本文介绍了一种生成二进制字符串序列的方法,并提供了计算第k位的高效算法。通过递归和位操作技巧,解决给定正整数n和k时,如何快速找到S_n中第k个比特位的问题。实例和约束条件展示了如何应用这些规则。
1641

被折叠的 条评论
为什么被折叠?



