第10周项目1- 二叉树算法库

本文介绍了一种二叉树的链式存储结构,并实现了创建、查找、输出等基本运算。通过具体示例展示了如何使用这些功能,包括创建特定形状的二叉树、查找指定节点及其左右孩子节点、计算二叉树深度等。
Copyright (c)2016,烟台大学计算机与控制工程学院  
* All rights reserved.  
* 文件名称:项目1.cpp  
* 作    者:王婧  
* 完成日期:2016年11月3日  
* 版 本 号:v1.0  
  
  
* 问题描述:  定义二叉树的链式存储结构,实现其基本运算,并完成测试。  
* 输入描述: 无  
* 程序输出: 测试数据  


brtee.h头文件代码

#ifndef BTREE_H_INCLUDED  
#define BTREE_H_INCLUDED  
  
  
#include <stdio.h>  
#include <malloc.h>  
#define MaxSize 100  
typedef char ElemType;  
typedef struct node  
{  
    ElemType data;              //数据元素  
    struct node *lchild;        //指向左孩子  
    struct node *rchild;        //指向右孩子  
} BTNode;  
void CreateBTNode(BTNode *&b,char *str);    //由str串创建二叉链  
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针  
BTNode *LchildNode(BTNode *p);              //返回*p节点的左孩子节点指针  
BTNode *RchildNode(BTNode *p);              //返回*p节点的右孩子节点指针  
int BTNodeDepth(BTNode *b);                 //求二叉树b的深度  
void DispBTNode(BTNode *b);                 //以括号表示法输出二叉树  
void DestroyBTNode(BTNode *&b);             //销毁二叉树  
  
  
#endif // BTREE_H_INCLUDED  

brtee.h是二叉树的一个算法库集合,里面声明了常用到的各个功能函数。

brtee.cpp文件代码

//二叉树基本运算函数  
#include "btree.h"  
  
  
void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链  
{  
    BTNode *St[MaxSize],*p=NULL;  
    int top=-1,k,j=0;  
    char ch;  
    b=NULL;             //建立的二叉树初始时为空  
    ch=str[j];  
    while (ch!='\0')    //str未扫描完时循环  
    {  
        switch(ch)  
        {  
        case '(':  
            top++;  
            St[top]=p;  
            k=1;  
            break;      //为左节点  
        case ')':  
            top--;  
            break;  
        case ',':  
            k=2;  
            break;                          //为右节点  
        default:  
            p=(BTNode *)malloc(sizeof(BTNode));  
            p->data=ch;  
            p->lchild=p->rchild=NULL;  
            if (b==NULL)                    //p指向二叉树的根节点  
                b=p;  
            else                            //已建立二叉树根节点  
            {  
                switch(k)  
                {  
                case 1:  
                    St[top]->lchild=p;  
                    break;  
                case 2:  
                    St[top]->rchild=p;  
                    break;  
                }  
            }  
        }  
        j++;  
        ch=str[j];  
    }  
}  
BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针  
{  
    BTNode *p;  
    if (b==NULL)  
        return NULL;  
    else if (b->data==x)  
        return b;  
    else  
    {  
        p=FindNode(b->lchild,x);  
        if (p!=NULL)  
            return p;  
        else  
            return FindNode(b->rchild,x);  
    }  
}  
BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针  
{  
    return p->lchild;  
}  
BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针  
{  
    return p->rchild;  
}  
int BTNodeDepth(BTNode *b)  //求二叉树b的深度  
{  
    int lchilddep,rchilddep;  
    if (b==NULL)  
        return(0);                          //空树的高度为0  
    else  
    {  
        lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep  
        rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep  
        return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);  
    }  
}  
void DispBTNode(BTNode *b)  //以括号表示法输出二叉树  
{  
    if (b!=NULL)  
    {  
        printf("%c",b->data);  
        if (b->lchild!=NULL || b->rchild!=NULL)  
        {  
            printf("(");  
            DispBTNode(b->lchild);  
            if (b->rchild!=NULL) printf(",");  
            DispBTNode(b->rchild);  
            printf(")");  
        }  
    }  
}  
void DestroyBTNode(BTNode *&b)   //销毁二叉树  
{  
    if (b!=NULL)  
    {  
        DestroyBTNode(b->lchild);  
        DestroyBTNode(b->rchild);  
        free(b);  
    }  
}  
brtee.cpp 对应 brtee.h 中声明的各个功能函数,给出了各个功能函数的实现方法。

main.cpp文件代码

  1. #include "btree.h"  
  2.   
  3.   
  4. int main()  
  5. {  
  6.     BTNode *b,*p,*lp,*rp;;  
  7.     printf("  (1)创建二叉树:");  
  8.     CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");  
  9.     printf("\n");  
  10.     printf("  (2)输出二叉树:");  
  11.     DispBTNode(b);  
  12.     printf("\n");  
  13.     printf("  (3)查找H节点:");  
  14.     p=FindNode(b,'H');  
  15.     if (p!=NULL)  
  16.     {  
  17.         lp=LchildNode(p);  
  18.         if (lp!=NULL)  
  19.             printf("左孩子为%c ",lp->data);  
  20.         else  
  21.             printf("无左孩子 ");  
  22.         rp=RchildNode(p);  
  23.         if (rp!=NULL)  
  24.             printf("右孩子为%c",rp->data);  
  25.         else  
  26.             printf("无右孩子 ");  
  27.     }  
  28.     else  
  29.         printf(" 未找到!");  
  30.     printf("\n");  
  31.     printf("  (4)二叉树b的深度:%d\n",BTNodeDepth(b));  
  32.     printf("  (5)释放二叉树b\n");  
  33.     DestroyBTNode(b);  
  34.     return 0;  
  35. }  
main.cpp中根据需要添加各个函数,以便实现相应功能。
测试用图:


本课题设计了一种利用Matlab平台开发的植物叶片健康状态识别方案,重点融合了色彩与纹理双重特征以实现对叶片病害的自动化判别。该系统构建了直观的图形操作界面,便于用户提交叶片影像并快速获得分析结论。Matlab作为具备高效数值计算与数据处理能力的工具,在图像分析与模式分类领域应用广泛,本项目正是借助其功能解决农业病害监测的实际问题。 在色彩特征分析方面,叶片影像的颜色分布常与其生理状态密切相关。通常,健康的叶片呈现绿色,而出现黄化、褐变等异常色彩往往指示病害或虫害的发生。Matlab提供了一系列图像处理函数,例如可通过色彩空间转换与直方图统计来量化颜色属性。通过计算各颜色通道的统计参数(如均值、标准差及主成分等),能够提取具有判别力的色彩特征,从而为不同病害类别的区分提供依据。 纹理特征则用于描述叶片表面的微观结构与形态变化,如病斑、皱缩或裂纹等。Matlab中的灰度共生矩阵计算函数可用于提取对比度、均匀性、相关性等纹理指标。此外,局部二值模式与Gabor滤波等方法也能从多尺度刻画纹理细节,进一步增强病害识别的鲁棒性。 系统的人机交互界面基于Matlab的图形用户界面开发环境实现。用户可通过该界面上传待检图像,系统将自动执行图像预处理、特征抽取与分类判断。采用的分类模型包括支持向量机、决策树等机器学习方法,通过对已标注样本的训练,模型能够依据新图像的特征向量预测其所属的病害类别。 此类课题设计有助于深化对Matlab编程、图像处理技术与模式识别原理的理解。通过完整实现从特征提取到分类决策的流程,学生能够将理论知识与实际应用相结合,提升解决复杂工程问题的能力。总体而言,该叶片病害检测系统涵盖了图像分析、特征融合、分类算法及界面开发等多个技术环节,为学习与掌握基于Matlab的智能检测技术提供了综合性实践案例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
霍夫曼编码是一种广泛使用的无损数据压缩算法,其核心思想是通过构建一棵带权路径最短的二叉树(霍夫曼树),为高频出现的字符分配较短的编码,为低频出现的字符分配较长的编码,从而实现高效压缩。在 Python 中,虽然标准库中没有直接实现霍夫曼编码的模块,但可以借助一些第三方库或自行实现相关算法。 ### 1. 使用 `bitarray` 库进行位操作 霍夫曼编码涉及大量的位操作,例如将字符编码为二进制串并进行打包和解包。Python 中的 `bitarray` 库非常适合这一任务,它提供了高效的位数组操作,便于构建和处理二进制数据流。 安装方式: ```bash pip install bitarray ``` 示例代码片段: ```python from bitarray import bitarray # 示例字符编码 code_table = { 'a': bitarray('0'), 'b': bitarray('10'), 'c': bitarray('11') } # 编码过程 text = "abac" encoded = bitarray() for char in text: encoded.extend(code_table[char]) # 写入文件 with open('compressed.bin', 'wb') as f: encoded.tofile(f) ``` ### 2. 自行实现霍夫曼编码类 虽然没有现成的库直接提供霍夫曼编码功能,但可以根据算法原理自行实现。通常包括以下组件: - **节点类**:用于构建霍夫曼树 - **优先队列**:使用 `heapq` 模块实现最小堆 - **编码与解码函数** 示例代码: ```python import heapq from collections import Counter class HuffmanNode: def __init__(self, char, freq): self.char = char self.freq = freq self.left = None self.right = None def __lt__(self, other): return self.freq < other.freq def build_huffman_tree(freq_map): heap = [HuffmanNode(char, freq) for char, freq in freq_map.items()] heapq.heapify(heap) while len(heap) > 1: left = heapq.heappop(heap) right = heapq.heappop(heap) merged = HuffmanNode(None, left.freq + right.freq) merged.left = left merged.right = right heapq.heappush(heap, merged) return heap[0] ``` ### 3. 霍夫曼编码的应用场景 基于纯霍夫曼算法的压缩程序能够对未经压缩的文件格式起到压缩作用,特别是对字节种类不多、重复次数多的文件格式如 BMP 位图、AVI 视频等能够起到非常好的压缩效果,但对于本身已经经过压缩的文件格式如 DOCX、MP4 等基本无效 [^2]。 此外,在实际运行测试过程中发现,对于权值相同的字符,每次迭代排序时编码要么是 0、要么是 1,这往往造成成对的编译码错误,问题主要出在以下代码中: ```python sorts = sorted(l, key=lambda x: x.value, reverse=False) ``` 因此,在实现过程中应特别注意节点排序策略,确保编码的一致性和正确性 [^3]。 ### 4. 面向对象设计与扩展性 在实现霍夫曼编码的过程中,可以采用面向对象设计来提高代码的可扩展性与灵活性。例如,使用策略模式处理不同的编码策略,使用工厂模式创建节点对象,使用递归模式构建霍夫曼树 [^1]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值