Redis的部分原理及相关知识

本文深入探讨了Redis作为高性能内存数据库的原理,包括其单线程模型、数据结构优化、多路I/O复用机制以及持久化策略。同时,分析了Redis在缓存场景中的优势和挑战,如缓存雪崩、穿透等问题的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为什么说Redis是单线程的以及Redis为什么这么快

一、redis相关问题
1.什么是Redis?
2.Redis是如何进行持久化的?
3.redis为什么这么快?
4.redis的“单线程”。
5.redis常见性能问题和解决方案。

二、缓存相关问题
1.什么是“二八定律”?
2.什么是“冷数据和热数据”?
3.什么是“缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级”?

1.1什么是redis

Redis简介
  Redis是一个开源的内存中的数据结构存储系统,它可以用作:数据库、缓存和消息中间件
  它支持多种类型的数据结构,如字符串(String),散列(Hash),列表(List),集合(Set),有序集合(Sorted Set或者是ZSet)与范围查询,Bitmaps,Hyperloglogs 和地理空间(Geospatial)索引半径查询。其中常见的数据结构类型有:**String、List、Set、Hash、ZSet(sorted set)**这5种。
  Redis 内置了复制(Replication),LUA脚本(Lua scripting), LRU驱动事件(LRU eviction),事务(Transactions) 和不同级别的磁盘持久化(Persistence),并通过 Redis哨兵(Sentinel)和自动分区(Cluster)提供高可用性(High Availability)。
Redis支持事务,操作都是原子性。可用于缓存,消息,按key设置过期时间,过期后会自动删除

1.2 Redis是如何进行持久化的

Redis提供了持久化的选项,这些选项可以让用户将自己的数据保存到磁盘上面进行存储。根据实际情况,可以每隔一定时间将数据集导出到磁盘(快照),或者追加到命令日志中(AOF只追加文件),他会在执行写命令时,将被执行的写命令复制到硬盘里面。也可以关闭持久化功能,将Redis作为一个高效的网络的缓存数据功能使用。

Redis的所有数据都是保存在内存中,然后不定期的通过异步方式保存到磁盘上(这称为“半持久化模式”);也可以把每一次数据变化都写入到一个append only file(aof)里面(这称为“全持久化模式”)。
由于Redis的数据都存放在内存中,如果没有配置持久化,redis重启后数据就全丢失了,于是需要开启redis的持久化功能,将数据保存到磁 盘上,当redis重启后,可以从磁盘中恢复数据。redis提供两种方式进行持久化,一种是RDB持久化(原理是将Reids在内存中的数据库记录定时 dump到磁盘上的RDB持久化),另外一种是AOF(append only file)持久化(原理是将Reids的操作日志以追加的方式写入文件)

RDB持久化是指在指定的时间间隔内将内存中的数据集快照写入磁盘,实际操作过程是fork一个子进程,先将数据集写入临时文件,写入成功后,再替换之前的文件,用二进制压缩存储。
在这里插入图片描述
RDB持久化的优势:
a).一旦采用该方式,那么你的整个Redis数据库将只包含一个文件,这对于文件备份而言是非常完美的。比如,你可能打算每个小时归档一次最近24小时的数据,同时还要每天归档一次最近30天的数据。通过这样的备份策略,一旦系统出现灾难性故障,我们可以非常容易的进行恢复。
b).对于灾难恢复而言,RDB是非常不错的选择。因为我们可以非常轻松的将一个单独的文件压缩后再转移到其它存储介质上。
c).性能最大化。对于Redis的服务进程而言,在开始持久化时,它唯一需要做的只是fork出子进程,之后再由子进程完成这些持久化的工作,这样就可以极大的避免服务进程执行IO操作了。
d).相比于AOF机制,如果数据集很大,RDB的启动效率会更高。

RDB持久化的劣势:
a).如果你想保证数据的高可用性,即最大限度的避免数据丢失,那么RDB将不是一个很好的选择。因为系统一旦在定时持久化之前出现宕机现象,此前没有来得及写入磁盘的数据都将丢失。
b).由于RDB是通过fork子进程来协助完成数据持久化工作的,因此,如果当数据集较大时,可能会导致整个服务器停止服务几百毫秒,甚至是1秒钟。

AOF持久化以日志的形式记录服务器所处理的每一个写、删除操作,查询操作不会记录,以文本的方式记录,可以打开文件看到详细的操作记录。

alt
AOF持久化的优势:
a).该机制可以带来更高的数据安全性,即数据持久性。Redis中提供了3中同步策略,即每秒同步、每修改同步和不同步。事实上,每秒同步也是异步完成的,其效率也是非常高的,所差的是一旦系统出现宕机现象,那么这一秒钟之内修改的数据将会丢失。而每修改同步,我们可以将其视为同步持久化,即每次发生的数据变化都会被立即记录到磁盘中。可以预见,这种方式在效率上是最低的。至于无同步,无需多言,我想大家都能正确的理解它。
b).由于该机制对日志文件的写入操作采用的是append模式,因此在写入过程中即使出现宕机现象,也不会破坏日志文件中已经存在的内容。然而如果我们本次操 作只是写入了一半数据就出现了系统崩溃问题,不用担心,在Redis下一次启动之前,我们可以通过redis-check-aof工具来帮助我们解决数据一致性的问题。
c). 如果日志过大,Redis可以自动启用rewrite机制。即Redis以append模式不断的将修改数据写入到老的磁盘文件中,同时Redis还会创建一个新的文件用于记录此期间有哪些修改命令被执行。因此在进行rewrite切换时可以更好的保证数据安全性。
d).AOF包含一个格式清晰、易于理解的日志文件用于记录所有的修改操作。事实上,我们也可以通过该文件完成数据的重建。

AOF持久化的劣势:
a).对于相同数量的数据集而言,AOF文件通常要大于RDB文件。RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。
b).根据同步策略的不同,AOF在运行效率上往往会慢于RDB。总之,每秒同步策略的效率是比较高的,同步禁用策略的效率和RDB一样高效。

二者选择的标准,就是看系统是愿意牺牲一些性能,换取更高的缓存一致性(aof),还是愿意写操作频繁的时候,不启用备份来换取更高的性能,待手动运行save的时候,再做备份(rdb)。rdb这个就更有些 eventually consistent的意思了。

RDB持久化配置
Redis会将数据集的快照dump到dump.rdb文件中。此外,我们也可以通过配置文件来修改Redis服务器dump快照的频率,在打开6379.conf文件之后,我们搜索save,可以看到下面的配置信息:
save 900 1 #在900秒(15分钟)之后,如果至少有1个key发生变化,则dump内存快照。
save 300 10 #在300秒(5分钟)之后,如果至少有10个key发生变化,则dump内存快照。
save 60 10000 #在60秒(1分钟)之后,如果至少有10000个key发生变化,则dump内存快照。
AOF持久化配置
在Redis的配置文件中存在三种同步方式,它们分别是:
appendfsync always #每次有数据修改发生时都会写入AOF文件。
appendfsync everysec #每秒钟同步一次,该策略为AOF的缺省策略。
appendfsync no #从不同步。高效但是数据不会被持久化。

1.3 Redis为什么这么快

Redis不使用表,他的数据库不会预定义或者强制去要求用户对Redis存储的不同数据进行关联。
Redis支持的数据类型有字符串、链表、集合、有序集合。支持在服务器端计算集合的交集、并集、补集等,还支持多种排序功能,所以Redis也可以被看成是一个数据结构服务器。
  数据库的工作模式按存储方式可分为:硬盘数据库和内存数据库。Redis 将数据储存在内存里面,读写数据的时候都不会受到硬盘 I/O 速度的限制,所以速度极快。
  (1)硬盘数据库的工作模式:
在这里插入图片描述
  
  (2)内存数据库的工作模式:
在这里插入图片描述
  
  Redis采用的是基于内存的采用的是单进程单线程模型的 KV 数据库,由C语言编写,官方提供的数据是可以达到100000+的QPS(每秒内查询次数)。有兴趣的可以参考官方的基准程序测试《How fast is Redis?》(https://redis.io/topics/benchmarks) 
在这里插入图片描述

那么Redis为什么快
  1、完全基于内存,绝大部分请求是纯粹的内存操作,非常快速。数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1);
  
  2、数据结构简单,对数据操作也简单,Redis中的数据结构是专门进行设计的;
  
  3、采用单线程,避免了不必要的上下文切换和竞争条件,也不存在多进程或者多线程导致的切换而消耗 CPU,不用去考虑各种锁的问题,不存在加锁释放锁操作,没有因为可能出现死锁而导致的性能消耗;
  
  4、使用多路I/O复用模型,非阻塞IO;
  
  5、使用底层模型不同,它们之间底层实现方式以及与客户端之间通信的应用协议不一样,Redis直接自己构建了VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求;
  
以上几点都比较好理解,下边我们针对多路 I/O 复用模型进行简单的探讨:  
  多路I/O复用模型是利用 select、poll、epoll 可以同时监察多个流的 I/O 事件的能力,在空闲的时候,会把当前线程阻塞掉,当有一个或多个流有 I/O 事件时,就从阻塞态中唤醒,于是程序就会轮询一遍所有的流(epoll 是只轮询那些真正发出了事件的流),并且只依次顺序的处理就绪的流,这种做法就避免了大量的无用操作。
  这里“多路”指的是多个网络连接,“复用”指的是复用同一个线程。采用多路 I/O 复用技术可以让单个线程高效的处理多个连接请求(尽量减少网络 IO 的时间消耗),且 Redis 在内存中操作数据的速度非常快,也就是说内存内的操作不会成为影响Redis性能的瓶颈,主要由以上几点造就了 Redis 具有很高的吞吐量。

1.4 Redis为什么是单线程的

单线程指的是网络请求模块使用了一个线程(所以不需考虑并发安全性),即一个线程处理所有网络请求,其他模块仍用了多个线程(使用单线程的方式是无法发挥多核CPU 性能的)。
Redis的内部实现采用epoll,采用了epoll+自己实现的简单的事件框架。epoll中的读、写、关闭、连接都转化成了事件,然后利用epoll的多路复用特性,绝不在io上浪费一点时间 这3个条件不是相互独立的,特别是第一条,如果请求都是耗时的,采用单线程吞吐量及性能可想而知了。应该说redis为特殊的场景选择了合适的技术方案。
redis实际上是采用了线程封闭的观念,把任务封闭在一个线程,自然避免了线程安全问题,不过对于需要依赖多个redis操作的复合操作来说,依然需要锁,而且有可能是分布式锁。
最新的redis6.0去掉了主线程和IO线程之间的互斥锁,采用busy loop的形式来等待io线程工作结束,这部分能够有50%的性能提升,架构图如下:在这里插入图片描述
Redis 的多线程部分只是用来处理网络数据的读写和协议解析,执行命令仍然是单线程。之所以这么设计是不想 Redis 因为多线程而变得复杂,需要去控制 key、lua、事务,LPUSH/LPOP 等等的并发问题。
加入多线程 IO 之后,整体的读流程如下:
主线程负责接收建连请求,读事件到来(收到请求)则放到一个全局等待读处理队列
主线程处理完读事件之后,通过 RR(Round Robin) 将这些连接分配给这些 IO 线程,然后主线程忙等待(spinlock 的效果)状态
IO 线程将请求数据读取并解析完成(这里只是读数据和解析并不执行)
主线程执行所有命令并清空整个请求等待读处理队列(执行部分串行)
上面的这个过程是完全无锁的,因为在 IO 线程处理的时主线程会等待全部的 IO 线程完成,所以不会出现data race的场景。
   
  警告:这里我们一直在强调的单线程,只是在处理我们的网络请求的时候只有一个线程来处理,一个正式的Redis Server运行的时候肯定是不止一个线程的,这里需要大家明确的注意一下!例如Redis进行持久化的时候会以子进程或者子线程的方式执行(具体是子线程还是子进程待读者深入研究);例如我在测试服务器上查看Redis进程,然后找到该进程下的线程:  
在这里插入图片描述
  
  ps命令的“-T”参数表示显示线程(Show threads, possibly with SPID column.)“SID”栏表示线程ID,而“CMD”栏则显示了线程名称。

1.5.redis常见性能问题和解决方案

a). Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件;(Master写内存快照,save命令调度rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务,所以Master最好不要写内存快照;AOF文件过大会影响Master重启的恢复速度)
b). 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次
c) .为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内
d) .尽量避免在压力很大的主库上增加从库
e). 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3…;这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。
f).我们知道Redis是用单线程-多路复用IO模型”来实现高性能的内存数据服务的,这种机制避免了使用锁,但是同时这种机制在进行sunion之类的比较耗时的命令时会使redis的并发下降。因为是单一线程,所以同一时刻只有一个操作在进行,所以,耗时的命令会导致并发的下降,不只是读并发,写并发也会下降。而单一线程也只能用到一个CPU核心,所以可以在同一个多核的服务器中,可以启动多个实例,组成master-master或者master-slave的形式,耗时的读命令可以完全在slave进行。  
g).“我们不能任由操作系统负载均衡,因为我们自己更了解自己的程序,所以,我们可以手动地为其分配CPU核,而不会过多地占用CPU,或是让我们关键进程和一堆别的进程挤在一起。”。
CPU 是一个重要的影响因素,由于是单线程模型,Redis 更喜欢大缓存快速 CPU, 而不是多核。
在多核 CPU 服务器上面,Redis 的性能还依赖NUMA 配置和处理器绑定位置。最明显的影响是 redis-benchmark 会随机使用CPU内核。为了获得精准的结果,需要使用固定处理器工具(在 Linux 上可以使用 taskset)。最有效的办法是将客户端和服务端分离到两个不同的 CPU 来高校使用三级缓存。

2.1什么是“二八定律”

“二八定律”:在任何一组东西中,最重要的只占其中一小部分,约20%,其余80%尽管是多数,却是次要的,因此又称二八定律。
redis的“二八定律”:网站访问数据的特点大多数呈现在"二八定律":80%的业务访问集中在20%的数据上。这时为了减轻数据的压力和提高网站的数据访问速度,则可以使用缓存机制来优化网站。

2.2.什么是“冷数据和热数据”?

热数据:是需要被计算节点频繁访问的在线类数据。
冷数据:是对于离线类不经常访问的数据,比如企业备份数据、业务与操作日志数据、话单与统计数据。
两个不同的访问频次,就导致了在数据库搭建的各自不同,有一句话简单明了:热数据就近计算,冷数据集中存储
所以,热数据因为访问频次需求大,效率要求高,所以就近计算和部署;冷数据访问频次低,效率要求慢,可以做集中化部署,而基于大规模存储池里,可以对数据进行压缩、去重等降低成本的方法。

2.3.什么是“缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级”?

a).缓存雪崩:

缓存雪崩我们可以简单的理解为:由于原有缓存失效,新缓存未到期间(例如:我们设置缓存时采用了相同的过期时间,在同一时刻出现大面积的缓存过期),所有原本应该访问缓存的请求都去查询数据库了,而对数据库CPU和内存造成巨大压力,严重的会造成数据库宕机。从而形成一系列连锁反应,造成整个系统崩溃。
缓存雪崩常规解决方案:
1.一般并发量不是特别多的时候,使用最多的解决方案是加锁排队。加锁排队只是为了减轻数据库的压力,并没有提高系统吞吐量。假设在高并发下,缓存重建期间key是锁着的,这是过来1000个请求999个都在阻塞的。同样会导致用户等待超时,这是个治标不治本的方法!
注意:加锁排队的解决方式分布式环境的并发问题,有可能还要解决分布式锁的问题;线程还会被阻塞,用户体验很差!因此,在真正的高并发场景下很少使用!
2.给每一个缓存数据增加相应的缓存标记,记录缓存的是否失效,如果缓存标记失效,则更新数据缓存。
解释说明:
1.缓存标记:记录缓存数据是否过期,如果过期会触发通知另外的线程在后台去更新实际key的缓存;
2.缓存数据:它的过期时间比缓存标记的时间延长1倍,例:标记缓存时间30分钟,数据缓存设置为60分钟。 这样,当缓存标记key过期后,实际缓存还能把旧数据返回给调用端,直到另外的线程在后台更新完成后,才会返回新缓存。
关于缓存崩溃的解决方法,这里提出了三种方案:使用锁或队列、设置过期标志更新缓存、为key设置不同的缓存失效时间,还有被称为“二级缓存”的解决方法。

b).缓存穿透:

缓存穿透是指用户查询数据,在数据库没有,自然在缓存中也不会有。这样就导致用户查询的时候,在缓存中找不到,每次都要去数据库再查询一遍,然后返回空(相当于进行了两次无用的查询)。这样请求就绕过缓存直接查数据库,这也是经常提的缓存命中率问题。
缓存穿透解决方案:
1.采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。
(但是布隆过滤器本身也有一些限制)
2.如果一个查询返回的数据为空(不管是数据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。通过这个直接设置的默认值存放到缓存,这样第二次到缓存中获取就有值了,而不会继续访问数据库,这种办法最简单粗暴!
把空结果也给缓存起来,这样下次同样的请求就可以直接返回空了,即可以避免当查询的值为空时引起的缓存穿透。同时也可以单独设置个缓存区域存储空值,对要查询的key进行预先校验,然后再放行给后面的正常缓存处理逻辑。

c).缓存预热:

缓存预热就是系统上线后,提前将相关的缓存数据直接加载到缓存系统。避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题!用户直接查询事先被预热的缓存数据!
缓存预热解决方案:
(1)直接写个缓存刷新页面,上线时手工操作下;
(2)数据量不大,可以在项目启动的时候自动进行加载;
(3)定时刷新缓存;

d).缓存更新

除了缓存服务器自带的缓存失效策略之外(Redis默认的有6中策略可供选择),我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种:
(1)定时去清理过期的缓存;
(2)当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。
两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂

e).缓存降级

当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。
降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。
在进行降级之前要对系统进行梳理,看看系统是不是可以丢卒保帅;从而梳理出哪些必须誓死保护,哪些可降级;比如可以参考日志级别设置预案:
(1)一般:比如有些服务偶尔因为网络抖动或者服务正在上线而超时,可以自动降级;
(2)警告:有些服务在一段时间内成功率有波动(如在95~100%之间),可以自动降级或人工降级,并发送告警;
(3)错误:比如可用率低于90%,或者数据库连接池被打爆了,或者访问量突然猛增到系统能承受的最大阀值,此时可以根据情况自动降级或者人工降级;
(4)严重错误:比如因为特殊原因数据错误了,此时需要紧急人工降级。

参考了优快云博主「萧曵 丶」的文章 《为什么说Redis是单线程的以及Redis为什么这么快!》
原文链接: https://blog.youkuaiyun.com/chenyao1994/article/details/79491337
以及:
https://www.cnblogs.com/AndyAo/p/8135980.html
https://www.jianshu.com/p/053ba529bf02/
博主「小不点啊」的《Redis系列十:缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级》
https://www.cnblogs.com/leeSmall/p/8594542.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值