C++深拷贝和浅拷贝

C++中类的拷贝有两种:深拷贝,浅拷贝:当出现类的等号赋值时,即会调用拷贝函数
一:两个的区别
1  在未定义显示拷贝构造函数的情况下,系统会调用默认的拷贝函数——即浅拷贝,它能够完成成员的一一复制。当数据成员中没有指针时,浅拷贝是可行的;但当数据成员中有指针时,如果采用简单的浅拷贝,则两类中的两个指针将指向同一个地址,当对象快结束时,会调用两次析构函数,而导致指针悬挂现象,所以,此时,必须采用深拷贝。
2 深拷贝与浅拷贝的区别就在于深拷贝会在堆内存中另外申请空间来储存数据,从而也就解决了指针悬挂的问题。简而言之,当数据成员中有指针时,必须要用深拷贝。
二  带实例的解释
c++默认的拷贝构造函数是浅拷贝
浅拷贝就是对象的数据成员之间的简单赋值,如你设计了一个没有类而没有提供它的复制构造函数,当用该类的一个对象去给令一个对象赋值时所执行的过程就是浅拷贝,如:
class A 
{ 
	public: 
	A(int _data) : data(_data){} 
	A(){}
	private: 
	int data;
 };
int main() 
{ 
	A a(5), b = a; // 仅仅是数据成员之间的赋值 
}
这一句b = a;就是浅拷贝,执行完这句后b.data = 5;
如果对象中没有其他的资源(如:堆,文件,系统资源等),则深拷贝和浅拷贝没有什么区别,
但当对象中有这些资源时,例子:
class A 
{ 
	public: 
	A(int _size) : size(_size)
	{
		data = new int[size];
	} // 假如其中有一段动态分配的内存 
	A(){};
	 ~A()
	{
		delete [] data;
	} // 析构时释放资源
	private: 
	int* data;
	int size; 
}
int main() 
{ 
	A a(5), b = a; // 注意这一句 
}
这里的b = a会造成未定义行为,因为类A中的复制构造函数是编译器生成的,所以b = a执行的是一个浅拷贝过程。我说过浅拷贝是对象数据之间的简单赋值,比如:
b.size = a.size;
b.data = a.data; // Oops!
这里b的指针data和a的指针指向了堆上的同一块内存,a和b析构时,b先把其data指向的动态分配的内存释放了一次,而后a析构时又将这块已经被释放过的内存再释放一次。对同一块动态内存执行2次以上释放的结果是未定义的,所以这将导致内存泄露或程序崩溃所以这里就需要深拷贝来解决这个问题,深拷贝指的就是当拷贝对象中有对其他资源(如堆、文件、系统等)的引用时(引用可以是指针或引用)时,对象的另开辟一块新的资源,而不再对拷贝对象中有对其他资源的引用的指针或引用进行单纯的赋值。如:
class A 
{ 
	public: 
	A(int _size) : size(_size)
	{
		data = new int[size];
	} // 假如其中有一段动态分配的内存 
	A(){};
	A(const A& _A) : size(_A.size)
	{
		data = new int[size];
	} // 深拷贝 
	~A()
	{
		delete [] data;
	} // 析构时释放资源
	private: 
	int* data; 
 	int size;
 }
int main() 
{ 
	A a(5), b = a; // 这次就没问题了 
}
总结:深拷贝和浅拷贝的区别是在对象状态中包含其它对象的引用的时候,当拷贝一个对象时,如果需要拷贝这个对象引用的对象,则是深拷贝,否则是浅拷贝。
设计并实现一个动态整型数组类Vect,要求: (1)实现构造函数重载,可以根据指定的元素个数动态创建初始值为0的整型数组,或根据指定的内置整型数组动态创建整型数组。 (2)设计拷贝构造函数析构函数,注意使用深拷贝。 (3)设计存取指定位置的数组元素的公有成员函数,并进行下标越界,若越界则输出“out of boundary”。 (4)设计获取数组元素个数的公有成员函数。 (5)设计用于输出数组元素的公有成员函数,元素之间以空格分隔,最后以换行符结束。 在main函数中按以下顺序操作: (1)根据内置的静态整型数组{1,2,3,4,5}构造数组对象v1,根据输入的整型数构造数组对象v2。 (2)调用Vect的成员函数依次输出v1v2的所有元素。 (3)输入指定的下标及对应的整型数,设置数组对象v1的指定元素。 (4)根据数组对象v1拷贝构造数组对象v3。 (5)调用Vect的成员函数依次输出v1v3的所有元素。 设计并实现一个动态整型数组类Vect,要求: (1)实现构造函数重载,可以根据指定的元素个数动态创建初始值为0的整型数组,或根据指定的内置整型数组动态创建整型数组。 (2)设计拷贝构造函数析构函数,注意使用深拷贝。 (3)设计存取指定位置的数组元素的公有成员函数,并进行下标越界,若越界则输出“out of boundary”。 (4)设计获取数组元素个数的公有成员函数。 (5)设计用于输出数组元素的公有成员函数,元素之间以空格分隔,最后以换行符结束。 在main函数中按以下顺序操作: (1)根据内置的静态整型数组{1,2,3,4,5}构造数组对象v1,根据输入的整型数构造数组对象v2。 (2)调用Vect的成员函数依次输出v1v2的所有元素。 (3)输入指定的下标及对应的整型数,设置数组对象v1的指定元素。 (4)根据数组对象v1拷贝构造数组对象v3。 (5)调用Vect的成员函数依次输出v1v3的所有元素。
### C++深拷贝浅拷贝的概念及实现方式 #### 1. 概念区分 在 C++ 中,深拷贝浅拷贝主要涉及对象之间的赋值或复制行为。两者的核心差异在于是否对指针所指向的资源进行了真正的复制。 - **浅拷贝**仅复制指针本身而不复制其指向的实际数据,这意味着两个对象的指针最终会指向同一片内存区域[^1]。 - **深拷贝**不仅复制指针还对其指向的数据也进行完整的复制操作,从而使得源对象目标对象各自拥有独立的一份数据副本[^1]。 #### 2. 默认行为分析 C++ 编译器提供的默认拷贝构造函数执行的是浅拷贝逻辑。也就是说如果没有特别定义自己的版本,则当一个类含有动态分配成员变量(如 `new` 关键字创建的对象)时可能会引发双重删除或其他未定义行为问题[^3]。 #### 3. 实现方法对比 ##### (a) 浅拷贝示例 下面展示了不考虑深拷贝情况下的典型例子: ```cpp #include <iostream> using namespace std; class ShallowCopyExample { public: int* ptr; // 构造函数初始化指针 ShallowCopyExample(int value){ ptr = new int(value); } // 默认析构函数释放内存 ~ShallowCopyExample(){ delete ptr; } }; int main() { ShallowCopyExample obj1(10); ShallowCopyExample obj2 = obj1; // 使用默认拷贝构造 cout << "*obj1.ptr=" << *(obj1.ptr) << ", *obj2.ptr="<<*(obj2.ptr)<<endl; return 0; } ``` 上述代码中,`obj2=obj1` 的时候只是简单地将 `ptr` 地址赋予给了另一个实例,并没有真正克隆底层数值。这样就会造成潜在的风险:一旦任意一方销毁之后再访问另一方就可能导致非法读取错误。 ##### (b) 深拷贝示例 为了避免上述隐患,我们需要显式重写拷贝构造函数来进行深层次的数据迁移: ```cpp #include <iostream> using namespace std; class DeepCopyExample { private: int* dataPtr; public: // 构造函数 DeepCopyExample(int d):dataPtr(new int(d)){} // 自定义拷贝构造函数完成深拷贝 DeepCopyExample(const DeepCopyExample& source) : dataPtr(new int(*(source.dataPtr))) {} // 析构函数清理资源 ~DeepCopyExample(){delete dataPtr;} void setData(int newValue){*dataPtr=newValue;} int getData()const{return *dataPtr;} }; int main(){ DeepCopyExample originalObj(42); DeepCopyExample copiedObj(originalObj); cout<<"Original Data:"<<originalObj.getData()<<", Copied Data:"<<copiedObj.getData()<<endl; originalObj.setData(99); // 修改原对象不会影响到copy后的对象 cout<<"After changing Original Obj:\n"; cout<<"Original Data:"<<originalObj.getData()<<", Copied Data:"<<copiedObj.getData()<<endl; return 0; } ``` 在这个案例里,我们通过重新定义拷贝构造函数实现了真正的分离效果,即使修改其中一个也不会干扰另外一个[^3]。 --- ### 性能考量及其他注意事项 尽管深拷贝提供了更高的安全性,但它也有一定的代价。它往往需要更多的计算时间额外的空间消耗,特别是在处理大型或者复杂的嵌套结构的时候更为明显[^2]。因此,在设计阶段应当权衡利弊决定采用何种策略最为合适。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

金州饿霸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值