欢迎使用优快云-markdown编辑器(test)

Markdown编辑器增强功能概览
本文介绍了一款增强型Markdown编辑器的新功能,包括界面设计优化、代码高亮、图片拖拽、数学公式、甘特图、UML图表、流程图及多种编辑模式,提升了写作体验。

欢迎使用Markdown编辑器

你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。

新的改变

我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:

  1. 全新的界面设计 ,将会带来全新的写作体验;
  2. 在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;
  3. 增加了 图片拖拽 功能,你可以将本地的图片直接拖拽到编辑区域直接展示;
  4. 全新的 KaTeX数学公式 语法;
  5. 增加了支持甘特图的mermaid语法1 功能;
  6. 增加了 多屏幕编辑 Markdown文章功能;
  7. 增加了 焦点写作模式、预览模式、简洁写作模式、左右区域同步滚轮设置 等功能,功能按钮位于编辑区域与预览区域中间;
  8. 增加了 检查列表 功能。

功能快捷键

撤销:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜体:Ctrl/Command + I
标题:Ctrl/Command + Shift + H
无序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
检查列表:Ctrl/Command + Shift + C
插入代码:Ctrl/Command + Shift + K
插入链接:Ctrl/Command + Shift + L
插入图片:Ctrl/Command + Shift + G
查找:Ctrl/Command + F
替换:Ctrl/Command + G

合理的创建标题,有助于目录的生成

直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC语法后生成一个完美的目录。

如何改变文本的样式

强调文本 强调文本

加粗文本 加粗文本

标记文本

删除文本

引用文本

H2O is是液体。

210 运算结果是 1024.

插入链接与图片

链接: link.

图片: Alt

带尺寸的图片: Alt

居中的图片: Alt

居中并且带尺寸的图片: Alt

当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。

如何插入一段漂亮的代码片

博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片.

// An highlighted block
var foo = 'bar';

生成一个适合你的列表

  • 项目
    • 项目
      • 项目
  1. 项目1
  2. 项目2
  3. 项目3
  • 计划任务
  • 完成任务

创建一个表格

一个简单的表格是这么创建的:

项目Value
电脑$1600
手机$12
导管$1

设定内容居中、居左、居右

使用:---------:居中
使用:----------居左
使用----------:居右

第一列第二列第三列
第一列文本居中第二列文本居右第三列文本居左

SmartyPants

SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:

TYPEASCIIHTML
Single backticks'Isn't this fun?'‘Isn’t this fun?’
Quotes"Isn't this fun?"“Isn’t this fun?”
Dashes-- is en-dash, --- is em-dash– is en-dash, — is em-dash

创建一个自定义列表

Markdown
Text-to- HTML conversion tool
Authors
John
Luke

如何创建一个注脚

一个具有注脚的文本。2

注释也是必不可少的

Markdown将文本转换为 HTML

KaTeX数学公式

您可以使用渲染LaTeX数学表达式 KaTeX:

Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n1)!nN 是通过欧拉积分

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t   . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.

你可以找到更多关于的信息 LaTeX 数学表达式here.

新的甘特图功能,丰富你的文章

Mon 06 Mon 13 Mon 20 已完成 进行中 计划一 计划二 现有任务 Adding GANTT diagram functionality to mermaid
  • 关于 甘特图 语法,参考 这儿,

UML 图表

可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图::

张三 李四 王五 你好!李四, 最近怎么样? 你最近怎么样,王五? 我很好,谢谢! 我很好,谢谢! 李四想了很长时间, 文字太长了 不适合放在一行. 打量着王五... 很好... 王五, 你怎么样? 张三 李四 王五

这将产生一个流程图。:

链接
长方形
圆角长方形
菱形
  • 关于 Mermaid 语法,参考 这儿,

FLowchart流程图

我们依旧会支持flowchart的流程图:

Created with Raphaël 2.2.0 开始 我的操作 确认? 结束 yes no
  • 关于 Flowchart流程图 语法,参考 这儿.

导出与导入

导出

如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。

导入

如果你想加载一篇你写过的.md文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。


  1. mermaid语法说明 ↩︎

  2. 注脚的解释 ↩︎

欢迎来到这个精心整理的单片机关联资源库,我们为您提供了一份珍贵的学习与开发宝藏——《90款行业常用单片机传感器代码例程》。这份宝贵的资源专为STM32、STC89C52、Arduino等单片机平台的开发者定制,旨在简化您的传感器集成过程,加速项目进展。 资源亮点 全面性:集合了90款市面上广泛使用的传感器驱动代码,覆盖加速度计、温度传感器、气体检测、光感、距离测量等多种类型。 实用性:每款传感器不仅包含驱动代码,更有原理图和详细说明书,帮助您从零开始快速理解传感器的应用。 适配范围广:无论是嵌入式爱好者、初学者还是专业开发者,无论使用的是STM32的专业级平台,经典的STC89C52,还是易于上手的Arduino,都能在这里找到所需的资料。 一站式解决方案:从简单的读取数据到复杂的算法实现,这套资料包为您提供了一站式的开发支持,极大缩短开发周期。 主要内容概览 传感器种类:包括但不限于ADXL335、DHT11、DS18B20、MPU6050、MQ系列气体传感器、MAX30102血氧传感器等。 技术支持:所有代码均经过实战验证,适用于KEIL、Arduino IDE等多种开发环境。 学习提升:适合用于教学、项目原型开发及个人技能提升,每一份代码都是一个学习案例。 配套文档:每种传感器配备有原理图,部分还有详细的使用说明,确保从硬件连接到软件编程全方位掌握。 获取方式 请注意,为了保护版权和资源的持续更新,原始分享链接和提取码已省略,请参照来源文章中的指引获取最新下载信息。 使用指南 下载资源:根据上述文章提供的网盘链接获取压缩包。 查阅文档:在开始编码之前,先阅读对应传感器的说明书和原理图。 环境配置:根据你的单片机型号,设置合适的开发环境。 动手实践:逐一尝试例程,结合硬件进行调试,加深理解。 交流学习:加入相关的技术社区,与其他开发者交流心得。
在分布式计算与云计算架构中,动态任务分配机制是保障系统资源高效利用的核心技术之一。本研究通过融合多种优化策略的混合型粒子群算法,构建了一套适应动态环境变化的负载均衡解决方案。以下将系统阐述该方案的理论基础与实现路径。 粒子群优化算法源于对生物群体觅食行为的数学建模,其通过模拟个体在解空间中的协同移动过程实现全局寻优。该算法具有实现简便、参数调整灵活等优势,但在处理高维复杂问题时易出现早熟收敛现象。为突破此局限,混合粒子群算法引入遗传算法的交叉变异机制与模拟退火算法的概率突跳特性,显著增强了算法的全局探索能力与收敛精度。 基于Java平台实现的动态任务调度系统,充分利用其并发编程框架与内存管理机制,构建了包含以下核心模块的完整体系: 1. 算法实现层:定义粒子实体、种群管理及优化控制器等基础组件 2. 资源建模层:建立任务描述模型与系统状态监测体系 3. 策略执行层:设计基于实时负载评估的任务分配机制 4. 验证体系:配置标准测试场景与性能评估指标 5. 技术文档:提供算法推导过程与系统集成指南 该实施方案通过动态监测计算节点负载状态,持续调整任务映射策略,在保证系统吞吐量的同时有效控制任务响应延迟。实验表明,该方法能显著提升资源利用率约23%,并降低任务完成时间波动幅度。对于从事分布式系统开发的技术人员而言,该项目不仅展示了智能优化算法的工程实践价值,更提供了将理论算法转化为实际解决方案的完整方法论。通过深入研究该体系,开发者可掌握构建自适应资源管理系统的关键技术,为复杂计算环境下的性能优化提供可靠支撑。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值