【目标检测Evaluation】F2 Score

本文深入解析了F2Score评估指标,介绍了其在不同交并比(IoU)阈值下的计算方法,涵盖从0.5到0.95的范围。详细说明了真阳性、假阳性和假阴性的定义,并展示了如何计算单张图像的平均F2Score,最后汇总了整个测试数据集的平均F2Score。

This competition is evaluated on the F2 Score at different intersection over union (IoU) thresholds. The IoU of a proposed set of object pixels and a set of true object pixels is calculated as:

                                                                    IoU(A,B)=\frac{A \cap B}{A \cup B}

The metric sweeps over a range of IoU thresholds, at each point calculating an F2 Score. The threshold values range from 0.5 to 0.95 with a step size of 0.05: (0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95). In other words, at a threshold of 0.5, a predicted object is considered a "hit" if its intersection over union with a ground truth object is greater than 0.5.

At each threshold value tt, the F2 Score value is calculated based on the number of true positives (TP), false negatives (FN), and false positives (FP) resulting from comparing the predicted object to all ground truth objects. The following equation is equivalent to F2 Score when β is set to 2:

                                                F_{ \beta (t)}= \frac{(1+ \beta^{2}) \cdot TP(t)}{(1+\beta^{2}) \cdot TP(t)+\beta^{2} FN(t)+FP(t)}

 

A true positive is counted when a single predicted object matches a ground truth object with an IoU above the threshold. A false positive indicates a predicted object had no associated ground truth object. A false negative indicates a ground truth object had no associated predicted object. The average F2 Score of a single image is then calculated as the mean of the above F2 Score values at each IoU threshold:

 

                                                                      \frac{1}{\left | thresholds \right |}\sum_{t} F_{2}(t)

Lastly, the score returned by the competition metric is the mean taken over the individual average F2 Scores of each image in the test dataset.

 

参考:https://www.kaggle.com/c/airbus-ship-detection#evaluation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值