如何让Python FastAPI异步/等待功能正常工作?
在FastAPI中,异步功能主要体现在两个地方:请求处理和处理函数中的异步操作。
1. 异步请求处理:为了处理大量请求,可以使用FastAPI的异步请求处理功能。通过将路由函数定义为`async def`,然后在调用时使用`await`关键字来等待函数执行完成。例如:
```python
from fastapi import FastAPI
import asyncio
app = FastAPI()
@app.get("/items/{item_id}")
async def read_item(item_id: int):
# 假设这是一个异步操作,需要使用await等待结果
result = await get_item_from_database(item_id)
return result
async def get_item_from_database(item_id: int):
# 异步操作,模拟从数据库中获取数据
await asyncio.sleep(1) # 模拟异步等待
return {"item_id": item_id, "name": f"Item {item_id}"}
```
2. 异步处理函数:在处理函数中执行异步操作,可以使用`asyncio`库的`run()`函数来运行整个FastAPI应用。例如:
```python
import asyncio
from fastapi import FastAPI
app = FastAPI()
@app.get("/items/{item_id}")
def read_item(item_id: int):
return get_item_from_database(item_id)
async def get_item_from_database(item_id: int):
# 异步操作,模拟从数据库中获取数据
await asyncio.sleep(1) # 模拟异步等待
return {"item_id": item_id, "name": f"Item {item_id}"}
async def main():
uvicorn.run(app, host="0.0.0.0", port=8000)
if __name__ == "__main__":
asyncio.run(main())
```
在测试用例中,可以使用`pytest`库来编写异步函数的测试。例如:
```python
import pytest
from fastapi.testclient import TestClient
app = FastAPI()
@app.get("/items/{item_id}")
def read_item(item_id: int):
return get_item_from_database(item_id)
async def get_item_from_database(item_id: int):
# 异步操作,模拟从数据库中获取数据
await asyncio.sleep(1) # 模拟异步等待
return {"item_id": item_id, "name": f"Item {item_id}"}
client = TestClient(app)
@pytest.mark.asyncio
async def test_read_item():
response = await client.get("/items/1")
assert response.status_code == 200
```
在人工智能大模型方面,FastAPI可以作为后端服务来接收用户请求,然后通过异步调用大模型的服务来处理用户的查询。例如,我们可以创建一个AI聊天机器人服务,当用户输入问题时,将问题发送给大模型进行回答,然后返回模型的回复。例如:
```python
from fastapi import FastAPI, HTTPException
import asyncio
app = FastAPI()
async def query_model(query: str):
# 模拟调用大模型服务
await asyncio.sleep(1) # 模拟异步等待
return f"The answer to '{query}' is 42."
@app.post("/chatbot")
def chatbot(query: str):
try:
response = query_model(query)
return {"query": query, "response": response}
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to query model.")
async def main():
uvicorn.run(app, host="0.0.0.0", port=8000)
if __name__ == "__main__":
asyncio.run(main())
```
在测试用例中,可以使用`pytest`库来编写AI聊天机器人的测试。例如:
```python
import pytest
from fastapi.testclient import TestClient
app = FastAPI()
async def query_model(query: str):
# 模拟调用大模型服务
await asyncio.sleep(1) # 模拟异步等待
return f"The answer to '{query}' is 42."
@app.post("/chatbot")
def chatbot(query: str):
try:
response = query_model(query)
return {"query": query, "response": response}
except Exception as e:
raise HTTPException(status_code=500, detail="Failed to query model.")
client = TestClient(app)
@pytest.mark.asyncio
async def test_chatbot():
response = await client.post("/chatbot", json={"query": "What is the answer to life, the universe and everything?"})
assert response.status_code == 200
assert response.json()["response"] == "The answer to 'What is the answer to life, the universe and everything?' is 42."
```python