TensorFlow系列:第三讲:MobileNetV2使用介绍

使用TensorFlow官方提供的API进行模型训练,keras系列API中,存在很多算法,使用MobileNetV2进行讲解。

一. MobileNetV2简介

MobileNetV2 是由 Google 在 2018 年发布的一种轻量级深度神经网络架构,旨在优化移动设备和嵌入式设备上的图像分类和其他视觉任务的性能。它是 MobileNet 系列的第二代改进版本,相较于 MobileNetV1,引入了新的层类型和架构改进,显著提升了模型的准确性和效率。

1. 主要特性和创新点
深度可分离卷积(Depthwise Separable Convolutions):

延续了 MobileNetV1 的设计,通过深度可分离卷积来减少参数量和计算量。深度可分离卷积将标准卷积分解为深度卷积和逐点卷积两个步骤,极大地减少了计算成本。

线性瓶颈(Linear Bottlenecks):

引入了线性瓶颈层,在每个模块的输入和输出使用低维线性空间。这有助于减少模型复杂度和计算量,同时避免信息丢失。

倒残差结构(Inverted Residuals):

引入了倒残差结构,与 ResNet 中的残差模块相反,MobileNetV2 中的残差连接在高维卷积层而不是低维层之间进行。
倒残差块结构通过扩展-深度卷积-压缩的过程来捕获更多的信息。

2. 架构细节

MobileNetV2 的架构由一系列倒残差块和普通卷积层组成:

Conv2D:初始标准卷积层,通常使用 3x3 卷积核。
Bottleneck Residual Blocks:包含扩展、深度可分离卷积和线性压缩。
每个瓶颈块通常包括:1x1 卷积(扩展通道数) -> 3x3 深度卷积 -> 1x1 卷积(压缩通道数)。
引入 ReLU6 激活函数用于非线性变换。
全局平均池

MobileNetV2是一种轻量级的卷积神经网络,适用于移动设备和嵌入式设备。TensorFlow提供了MobileNetV2的预训练模型,也可以通过构建模型来训练自己的数据集。 以下是使用TensorFlow实现MobileNetV2的示例代码: ```python import tensorflow as tf from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, ReLU, DepthwiseConv2D, GlobalAveragePooling2D, Dense from tensorflow.keras.models import Model def MobileNetV2(input_shape, num_classes): input_tensor = Input(shape=input_shape) # 第一层卷积 x = Conv2D(32, (3, 3), strides=(2, 2), padding='same')(input_tensor) x = BatchNormalization()(x) x = ReLU()(x) # inverted residual blocks x = inverted_residual_block(x, 16, (3, 3), t=1, strides=1, n=1) x = inverted_residual_block(x, 24, (3, 3), t=6, strides=2, n=2) x = inverted_residual_block(x, 32, (3, 3), t=6, strides=2, n=3) x = inverted_residual_block(x, 64, (3, 3), t=6, strides=2, n=4) x = inverted_residual_block(x, 96, (3, 3), t=6, strides=1, n=3) x = inverted_residual_block(x, 160, (3, 3), t=6, strides=2, n=3) x = inverted_residual_block(x, 320, (3, 3), t=6, strides=1, n=1) # 最后一层卷积 x = Conv2D(1280, (1, 1), strides=(1, 1), padding='same')(x) x = BatchNormalization()(x) x = ReLU()(x) # 全局平均池化层 x = GlobalAveragePooling2D()(x) # 全连接层 outputs = Dense(num_classes, activation='softmax')(x) # 构建模型 model = Model(inputs=input_tensor, outputs=outputs) return model def inverted_residual_block(x, filters, kernel_size, t, strides, n): # 使用t倍扩展通道数 tchannel = tf.keras.backend.int_shape(x)[-1] * t for i in range(n): if i == 0: # 第一层 y = Conv2D(tchannel, (1, 1), strides=(1, 1), padding='same')(x) y = BatchNormalization()(y) y = ReLU()(y) else: # 后续层 y = Conv2D(tchannel, (1, 1), strides=(1, 1), padding='same')(x) y = BatchNormalization()(y) y = ReLU()(y) # 深度可分离卷积 y = DepthwiseConv2D(kernel_size, strides=(strides, strides), padding='same')(y) y = BatchNormalization()(y) y = ReLU()(y) # 1x1卷积 y = Conv2D(filters, (1, 1), strides=(1, 1), padding='same')(y) y = BatchNormalization()(y) # 添加残差连接 if tf.keras.backend.int_shape(x)[-1] == filters: x = tf.keras.layers.add([x, y]) else: # 如果通道数不同,则需要使用卷积调整 adjust = Conv2D(filters, (1, 1), strides=(1, 1), padding='same')(x) adjust = BatchNormalization()(adjust) x = tf.keras.layers.add([adjust, y]) x = ReLU()(x) return x ``` 在上面的代码中,我们使用`inverted_residual_block`函数来构建MobileNetV2的主体部分。该函数实现了MobileNetV2中的倒置残差块,包括扩展通道数、深度可分离卷积、1x1卷积和残差连接等。 最终,我们使用`MobileNetV2`函数来构建整个模型,并返回一个Keras模型对象。 ```python input_shape = (224, 224, 3) num_classes = 1000 model = MobileNetV2(input_shape=input_shape, num_classes=num_classes) model.summary() ``` 在使用上述代码后,我们可以打印出模型的摘要信息,以检查模型的层结构和参数数量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值