使用 OpenSearch 的 K-NN 向量搜索来增强搜索功能

使用 OpenSearch 的 K-NN 向量搜索来增强搜索功能

许多应用程序都依赖于提供精确且相关的搜索结果的能力。尽管传统关系数据库的全文搜索功能在某些情况下已经足够,但这些数据库在从文本中提取语义含义或搜索结构化程度较低的数据方面可能会出现不足。在这篇博文中,我们将探讨如何使用 DigitalOcean 管理的 OpenSearch 和一组称为 K-Nearest Neighbor 向量搜索 (K-NN) 的技术来解决这些限制。K-NN 使 OpenSearch 成为各种搜索和分析应用程序的强大而灵活的解决方案。

理解 K-NN 向量搜索

什么是 K-NN 向量搜索?

与依赖关键字匹配的传统搜索方法不同, K-NN 向量搜索 涉及将数据集中的每条记录表示为 封装 记录属性的向量。机器学习模型通常用于将数据 嵌入 到向量表示中。进行查询时,搜索引擎会计算查询向量与数据向量之间的距离,并根据预定义的距离度量(例如欧几里得距离或余弦相似度)返回最近邻。

为什么使用 OpenSearch 进行 K-NN 向量搜索?

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值