使用 mongo2neo4j 和 SemSpect 通过各种方式进行图探索

用于可视化和探索每个 MEAN 堆栈背后的数据图的 ETL

您是否正在努力回答有关 MEANS Web 服务数据的紧急问题?哪里有 BI 可以快速回答“上个季度哪些亚洲的artisan.plus 用户触发了订单?”这个问题,而无需编写查询?使用 mongo2neo4jNeo4jSemSpect ,可以根据需要以可视化方式免费回答此类问题。这篇文章介绍了如何将 MongoDB 数据和对象模型转移到 Neo4j,以及如何使用 SemSpect 深入了解您的业务数据。

MEAN 堆栈

MEAN 堆栈 (MEANS) 是基于 MongoDBExpress.jsAngularJSNode.js 构建的流行技术组合,适用于 Netflix、PayPal、Gmail、LinkedIn、YouTube 等云应用程序。在前端方面,此堆栈有多种变体,例如 MERN(使用 React 而不是 Angular)或 MEVN(使用 Vue.js )。无论如何,MongoDB 始终充当数据后端,作为管理集合中嵌套 JSON 对象的数据库。集合包含 JSON 对象,在 MongoDB 中称为文档,具有类似的结构(例如,一个用于用户的集合,一个用于产品的集合,一个用于订单的集合等)。

此堆栈通常会辅以对象数据建模 (ODM) 框架,例如MongoDB 上的 mongoose 。通过整合 mongoose,您可以无缝定义和实施数据模式,从而在集合之间或跨集合建立 JSON 对象之间的链接。这可以增强数据完整性并降低不一致的风险。

集合中隐藏的宝贵知识

MEAN 堆栈很棒,但它无法轻松洞察底层数据,甚至无法回答简单的业务问题。这是因为 JSON 数据集合不易探索。MongoDB 有一个 查询 API ,包括聚合和投影,但结果始终是 JSON。此外,该 API 有点麻烦,需要编程知识,有时您从一开始就不知道在数据中寻找什么。

这就是 mongo2neo4j 发挥作用的地方。通过自动转换为 Neo4j 的标记属性图 (LPG),可以使用 SemSpect 轻松可视化、探索和分析生成的图表。

alt

mongo2neo4j 构建了从 MEAN 堆栈到图和图分析世界的桥梁

例如,在为咖啡库存管理应用程序 artisan.plus 规划新功能时,出现了一个问题:其 PRO 用户中是否有人只烘焙来自巴西的纯阿拉比卡咖啡混合物?调查这个问题后,只需在 SemSpect 中单击几下并加载相关的 artisan.plus 数据(约 120 万个节点和 360 万个关系),就会发现 59 位 PRO 用户进行了约 24,000 次此类混合烘焙。

alt

SemSpect 使用来自 artisan.plus 的样本数据:有多少 PRO 用户将纯阿拉比卡咖啡与仅来自巴西的咖啡混合烘焙?

将您的平均值变成图表并进行探索

Mongo2neo4j、Neo4j 和 SemSpect 图形可视化和探索工具有效地解决了这种缺乏数据洞察力的问题。

mongo2neo4j 是将 MEANS 数据传输到本机图形的最快、最方便的方法,同时考虑到对象关系数据模型。但是,我们为什么要将数据映射到图形中呢?图形模型是处理对象和关系时最自然的数据模型——正是您在应用 mongoose 或任何其他 ODM 框架时在 MongoDB 中编码的内容。生成的图形接近对象关系数据模型。与分布在各个集合中的原始 JSON 表示相比,以对象和关系网络形式显示的图形更易于查询和理解。

简单来说:使用 mongo2neo4j,所有顶级 JSON 对象都将成为图节点。每个 JSON 对象的字段都会产生相应图节点的属性。默认情况下,嵌套数组元素也会成为节点,并通过关系链接到其原始节点。

对于 ODM 框架引入的每个对象引用(通过对象 ID),mongo2neo4j 都会与图形模型中对象的相应节点建立关系。正如我们稍后看到的,某些配置允许我们在必要时调整 JSON 对象到 Neo4j 节点的映射。

一旦我们的 JSON 集合可以作为数据图使用,就可以更轻松地查看节点之间的链接、掌握间接连接,并通过使用 SemSpect 等工具以交互方式探索图表来开发查询。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值