索引介绍
sw_records-all
这个索引用于存储所有的采样记录,包括但不限于慢SQL查询、Agent分析得到的数据等。这些记录数据包括Traces、Logs、TopN采样语句和告警信息。它们被用于性能分析和故障排查,帮助开发者和运维团队理解服务的行为和性能特点。
mapping
{
"sw_records-all": {
"aliases": {
"sw_records-all": {}
},
"mappings": {
"_source": {
"excludes": [
"tags"
]
},
"properties": {
"alarm_message": {
"type": "keyword",
"copy_to": [
"alarm_message_match"
},
"alarm_message_match": {
"type": "text",
"analyzer": "oap_analyzer"
},
"continuous_profiling_json": {
"type": "keyword",
"index": false
},
"create_time": {
"type": "long"
},
"data_binary": {
"type": "binary"
},
"dump_binary": {
"type": "binary"
},
"dump_period": {
"type": "integer"
},
"dump_time": {
"type": "long"
},
"duration": {
"type": "integer"
},
"end_time_nanos": {
"type": "integer"
},
"end_time_second": {
"type": "long"
},
"endpoint_name": {
"type": "keyword"
},
"entity_id": {
"type": "keyword"
},
"event": {
"type": "keyword"
},
"extension_config_json": {
"type": "keyword",
"index": false
},
"fixed_trigger_duration": {
"type": "long"
},
"id0": {
"type": "keyword",
"index": false
},
"id1": {
"type": "keyword",
"index": false
},
"instance_id": {
"type": "keyword"
},
"last_update_time": {
"type": "long"
},
"latency": {
"type": "long"
},
"logical_id": {
"type": "keyword"
},
"max_sampling_count": {
"type": "integer"
},
"min_duration_threshold": {
"type": "integer"
},
"name": {
"type": "keyword",
"index": false
},
"operation_time": {
"type": "long"
},
"operation_type": {
"type": "integer",
"index": false
},
"process_labels_json": {
"type": "keyword"
},
"record_table": {
"type": "keyword"
},
"related_trace_id": {
"type": "keyword"
},
"rule_name": {
"type": "keyword"
},
"schedule_id": {
"type": "keyword"
},
"scope": {
"type": "integer"
},
"segment_id": {
"type": "keyword"
},
"sequence": {
"type": "integer"
},
"service_id": {
"type": "keyword"
},
"stack_binary": {
"type": "binary"
},
"stack_id": {
"type": "keyword"
},
"start_time": {
"type": "long"
},
"start_time_nanos": {
"type": "integer"
},
"start_time_second": {
"type": "long"
},
"statement": {
"type": "keyword",
"index": false
},
"tags": {
"type": "keyword"
},
"tags_raw_data": {
"type": "binary"
},
"target_type": {
"type": "integer"
},
"task_id": {
"type": "keyword"
},
"time_bucket": {
"type": "long"
},
"timestamp": {
"type": "long"
},
"trace_id": {
"type": "keyword",
"index": false
},
"trace_ref_type": {
"type": "integer"
},
"trace_segment_id": {
"type": "keyword"
},
"trace_span_id": {
"type": "keyword"
},
"trigger_type": {
"type": "integer"
},
"upload_time": {
"type": "long"
}
}
},
"settings": {
"index": {
"routing": {
"allocation": {
"include": {
"_tier_preference": "data_content"
}
}
},
"refresh_interval": "30s",
"number_of_shards": "1",
"provided_name": "sw_records-all-20241125",
"creation_date": "1732464023751",
"analysis": {
"analyzer": {
"oap_analyzer": {
"type": "stop"
}
}
},
"number_of_replicas": "1",
"uuid": "qrRVCMSNSnO90iz9hHWD0Q",
"version": {
"created": "7170799"
}
}
}
}
} |
sw_metrics-all
这个索引存储服务、服务实例及端点的元数据,即指标信息。这些指标数据包括服务的响应时间、吞吐量、错误率等关键性能指标,以分钟级别存储。这些数据对于监控服务性能至关重要,因为它们提供了实时的性能反馈,使得团队能够快速识别和解决性能问题。
metric_table枚举值
1、endpoint_cpm:端点的每分钟调用次数(CPM)
2、endpoint_percentile:端点的响应时间百分位数
3、endpoint_resp_time:端点的平均响应时间
4、endpoint_sla:服务等级协议(SLA)指标
5、endpoint_sidecar_internal_req_latency_nanos 和 endpoint_sidecar_internal_resp_latency_nanos:端点Sidecar内部请求和响应延迟的纳秒数
6、instance_jvm_xxx:服务实例的JVM相关指标,如类加载数量、CPU使用率、内存使用情况、垃圾回收次数和线程状态等
7、meter_thread_pool:线程池相关的度量
8、service_instance_cpm、service_instance_resp_time、service_instance_sla:服务实例级别的CPM、响应时间和SLA指标
9、service_instance_sidecar_internal_req_latency_nanos 和 service_instance_sidecar_internal_resp_latency_nanos:服务实例级别的Sidecar内部请求和响应延迟的纳秒数
result
{
"key": "endpoint_cpm",
"doc_count": 5763
},
{
"key": "endpoint_percentile",
"doc_count": 5763
},
{
"key": "endpoint_resp_time",
"doc_count": 5763
},
{
"key": "endpoint_sla",
"doc_count": 5763
},
{
"key": "endpoint_sidecar_internal_req_latency_nanos",
"doc_count": 5754
},
{
"key": "endpoint_sidecar_internal_resp_latency_nanos",
"doc_count": 5754
},
{
"key": "instance_jvm_class_loaded_class_count",
"doc_count": 2811
},
{
"key": "instance_jvm_class_total_loaded_class_count",
"doc_count": 2811
},
{
"key": "instance_jvm_class_total_unloaded_class_count",
"doc_count": 2811
},
{
"key": "instance_jvm_cpu",
"doc_count": 2811
},
{
"key": "instance_jvm_memory_heap",
"doc_count": 2811
},
{
"key": "instance_jvm_memory_heap_max",
"doc_count": 2811
},
{
"key": "instance_jvm_memory_noheap",
"doc_count": 2811
},
{
"key": "instance_jvm_memory_noheap_max",
"doc_count": 2811
},
{
"key": "instance_jvm_old_gc_count",
"doc_count": 2811
},
{
"key": "instance_jvm_old_gc_time",
"doc_count": 2811
},
{
"key": "instance_jvm_thread_blocked_state_thread_count",
"doc_count": 2811
},
{
"key": "instance_jvm_thread_daemon_count",
"doc_count": 2811
},
{
"key": "instance_jvm_thread_live_count",
"doc_count": 2811
},
{
"key": "instance_jvm_thread_peak_count",
"doc_count": 2811
},
{
"key": "instance_jvm_thread_runnable_state_thread_count",
"doc_count": 2811
},
{
"key": "instance_jvm_thread_timed_waiting_state_thread_count",
"doc_count": 2811
},
{
"key": "instance_jvm_thread_waiting_state_thread_count",
"doc_count": 2811
},
{
"key": "instance_jvm_young_gc_count",
"doc_count": 2811
},
{
"key": "instance_jvm_young_gc_time",
"doc_count": 2811
},
{
"key": "meter_thread_pool",
"doc_count": 2811
},
{
"key": "service_instance_cpm",
"doc_count": 1661
},
{
"key": "service_instance_resp_time",
"doc_count": 1661
},
{
"key": "service_instance_sla",
"doc_count": 1661
},
{
"key": "service_instance_sidecar_internal_req_latency_nanos",
"doc_count": 1659
},
{
"key": "service_instance_sidecar_internal_resp_latency_nanos",
"doc_count": 1659
} |
mapping
{
"sw_metrics-all-20241125": {
"aliases": {
"sw_metrics-all": {}
},
"mappings": {
"properties": {
"address": {
"type": "keyword"
},
"agent_id": {
"type": "keyword"
},
"component_id": {
"type": "integer",
"index": false
},
"component_ids": {
"type": "keyword",
"index": false
},
"count": {
"type": "long",
"index": false
},
"dataset": {
"type": "text",
"index": false
},
"datatable_count": {
"type": "text",
"index": false
},
"datatable_summation": {
"type": "text",
"index": false
},
"datatable_value": {
"type": "text",
"index": false
},
"denominator": {
"type": "long"
},
"dest_endpoint": {
"type": "keyword"
},
"dest_process_id": {
"type": "keyword"
},
"dest_service_id": {
"type": "keyword"
},
"dest_service_instance_id": {
"type": "keyword"
},
"detect_type": {
"type": "integer"
},
"double_summation": {
"type": "double",
"index": false
},
"double_value": {
"type": "double"
},
"ebpf_profiling_schedule_id": {
"type": "keyword"
},
"end_time": {
"type": "long"
},
"endpoint": {
"type": "keyword"
},
"endpoint_traffic_name": {
"type": "keyword",
"copy_to": [
"endpoint_traffic_name_match"
]
},
"endpoint_traffic_name_match": {
"type": "text",
"analyzer": "oap_analyzer"
},
"entity_id": {
"type": "keyword"
},
"instance_id": {
"type": "keyword"
},
"instance_traffic_name": {
"type": "keyword",
"index": false
},
"int_value": {
"type": "integer"
},
"label": {
"type": "keyword"
},
"labels_json": {
"type": "keyword",
"index": false
},
"last_ping": {
"type": "long"
},
"last_update_time_bucket": {
"type": "long"
},
"layer": {
"type": "integer"
},
"match": {
"type": "long",
"index": false
},
"message": {
"type": "keyword"
},
"metric_table": {
"type": "keyword"
},
"name": {
"type": "keyword"
},
"numerator": {
"type": "long"
},
"parameters": {
"type": "keyword",
"index": false
},
"percentage": {
"type": "integer"
},
"precision": {
"type": "integer",
"index": false
},
"process_id": {
"type": " |

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



