Maximum sum
题目描述
Given a set of n integers: A={a1, a2,…, an}, we define a function d(A) as below:
Your task is to calculate d(A).
输入
The input consists of T(<=30) test cases. The number of test cases (T) is given in the first line of the input.
Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, …, an. (|ai| <= 10000).There is an empty line after each case.
输出
Print exactly one line for each test case. The line should contain the integer d(A).
样例
Sample Input
1
10
1 -1 2 2 3 -3 4 -4 5 -5
Sample Output
13
Hint
In the sample, we choose {2,2,3,-3,4} and {5}, then we can get the answer.
Huge input,scanf is recommended.
题意
最大字段和问题的简单延伸 思想类似与折半搜索的感觉
AC代码
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
#define LL long long
#define CLR(a,b) memset(a,(b),sizeof(a))
const int INF = 0x3f3f3f3f;
const int mod = 1e9+7;
const int MAXN = 1e5+10;
int arr[MAXN];
int dp[MAXN]; // dp[i] 表示的状态就是以arr[i]为结尾的最大子段和的大小
int rr[MAXN], ll[MAXN];
int main() {
// ios::sync_with_stdio(false);
int T;
cin >> T;
while(T--) {
CLR(arr,0);
CLR(dp,0);
int n;
cin >> n;
for(int i = 1; i <= n; i++)
scanf("%d",&arr[i]);
dp[0] = -INF;
rr[n+1] = ll[0] = -INF;
for(int i = 1; i <= n; i++)
dp[i] = max(dp[i-1]+arr[i], arr[i]);
for(int i = 1; i <= n; i++)
ll[i] = max(dp[i], ll[i-1]);
CLR(dp,0), dp[n+1] = -INF;
for(int i = n; i >= 1; i--)
dp[i] = max(dp[i+1]+arr[i], arr[i]);
for(int i = n; i >= 1; i--)
rr[i] = max(rr[i+1],dp[i]);
int ans = -INF;
for(int i = 1; i <= n; i++)
ans = max(ans, ll[i]+rr[i+1]);
cout << ans << endl;
}
return 0;
}

本文介绍了一个最大字段和问题的算法实现,通过动态规划求解给定整数集合中两个不相交子集的最大和,提供了完整的AC代码示例。
528

被折叠的 条评论
为什么被折叠?



