推荐相关
CF(Collaborative Filtering)
- Item-Based Collaborative Filtering Recommendation Algorithms , paper链接 , paper-biji
- Collaborative Metric Learning , paper链接 , paper-biji
- Item2Vec: Neural Item Embedding for Collaborative Filtering , paper链接 , paper-biji
- 少数人的智慧(The Wisdom of the Few) , paper链接, zhihu
- Neural Collaborative Filter , paper链接 , code , blog , paper-biji
- Outer Product-based Neural Collaborative Filtering , paper链接 , code , blog , paper-biji
- ALS , blog
GBDT及各种变形
- greedy function approximation: a gradient boosting machine , paper链接 , code , blog , paper-biji
- A Regression Framework for Learning Ranking Functions Using Relative Relevance Judgments , paper链接 , code , blog , paper-biji
- From RankNet to LambdaRank to LambdaMART: An overview , paper链接 , code , blog , paper-biji
- GBDT+LR , paper链接 , xgboost , lightgbm , paper-biji
MF(Matrix Factorization)
- nimfa
- MF
- Matrix Factorization techniques for Recommender Systems
- Predicting movie ratings and recommender systems
FM = LR + MF
FFM
- Field-aware Factorization Machines for CTR Prediction , paper链接 ,FFM ,xlearn , libffm ,
深入FFM原理与实践_美团 , 3 Idiots’ Approach for Display Advertising Challenge
MLR(多元线性回归模型)= Embedding + MF + LR
FNN = FM + MLP
Deep Learning over Multi-Field Categorical Data: A Case Study on User Response Prediction, paper链接 , code , blog , paper-biji
PNN = FNN + product layer
Product-based Neural Networks for User Response Prediction , paper链接 ,
code1-torch ,
code2-tf ,
code3-tf ,
code4-tf , blog , paper-biji ()
DeepFM = FM + Embedding + MLP
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction, paper链接 ,
code1-tf ,
code2-tf ,
code3-tf ,
code4-torch ,
code5-tf ,
code6-tf ,
code7-tf , paper-biji
NFM(Neural FM) = FM + Embedding + MLP + Bi-Interaction Pooling
Neural Factorization Machines for Sparse Predictive Analytics, paper链接 , code, code , blog , paper-biji
AFM(Attentional FM)= LR + Embedding + MLP + Attention
Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks, paper链接 ,
code1-tf ,
code2-torch ,
code3 ,
code4-tf , blog , paper-biji
WDL(Wide & Deep)= LR + Embedding + MLP
【github】 wide&deep, ichuang, tensorflow
【github】wide&deep, jrzaurin, keras
【github】wide&deep, jorahn, keras
【github】wide&deep, zhougr1993, tensorflow
【github】wide&deep, lambdaji, tensorflow
【API】wide&deep, tensorflow, tf-API
【Paper】Wide & Deep Learning for Recommender Systems
, paper链接 , code , blog , paper-biji
YouTube Recommendation DNN
Deep Neural Networks for YouTube Recommendations paper链接 , code , blog , paper-biji
DIN(Deep Interest Network)= Embedding + MLP + Attention
Deep Interest Network for Click-Through Rate Prediction (阿里提出)
paper链接 , code , blog , paper-biji
MIND
Multi-Interest Network with Dynamic Routing for Recommendation at Tmall(阿里提出)
paper链接
paper-biji
DeepCTR = CNN + Embedding + MLP
【Paper】Deep CTR Prediction in Display Advertising
DCN (Deep & Cross Network) = Embedding + ResNet + LR
- Deep & Cross Network for Ad Click Predictions paper链接 , code , blog , paper-biji
- Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features paper链接 , code , blog , paper-biji
Deep Embedding Forest = Embedding + Forest
- Deep Embedding Forest: Forest-based Serving with Deep Embedding Features , paper链接
- Deep Forest: Towards An Alternative to Deep Neural Networks , paper链接 code , blog , paper-biji
xDeepFM
【Paper】https://arxiv.org/abs/1803.05170
, paper链接 , code , blog , paper-biji
其他
【Paper】https://www.ijcai.org/proceedings/2018/0277.pdf
强化学习在推荐系统中的应用
DRN
【Paper】DRN: A Deep Reinforcement Learning Framework for News Recommendation
【Paper】Deep Reinforcement Learning for Page-wise Recommendations
Multi-Task Learning
An Overview of Multi-Task Learning in Deep Neural Networks∗
SEMAX: Multi-Task Learning for Improving Recommendations
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
Multi-task Learning of Pairwise Sequence Classification Tasks Over Disparate Label Spaces
Improving Entity Recommendation with Search Log and Multi-Task Learning
Perceive Your Users in Depth: Learning Universal User Representations from Multiple E-commerce Tasks
Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts
多样性
Tagging like Humans: Diverse and Distinct Image Annotation (行列式点过程)
多目标
孪生网络
【ICML-2015 workshop】Siamese Neural Networks for One-shot Image Recognition
【NIPS-2005】Learning a Similarity Metric Discriminatively, with Application to Face Verificatio
【CVPR-2015】FaceNet: A Unified Embedding for Face Recognition and Clustering
Graph Embedding
【2017】graph2vec: Learning Distributed Representations of Graphs
【Paper】Graph Convolutional Neural Networks for Web-Scale Recommender Systems
【Paper】Graph Convolutional Matrix Completion
《Graph Neural Networks: A Review of Methods and Applications》
《A Comprehensive Survey on Graph Neural Networks》
深度学习
- Attention is all your need , paper链接 , paper-biji
- Variation Autoencoder Based Network Representation Learning for Classification , paper链接 , paper-biji
Network Embedding/Graph Embedding
- DeepWalk: Online Learning of Social Representations , paper链接 , code , zhihu , paper-biji
- node2vec: Scalable Feature Learning for Networks , paper链接 , code , blog , paper-biji
- Line: Large-scale information network embedding , paper链接 , code , blog , paper-biji
- Graph embedding techniques, applications, and performance: A survey , paper链接 , code , blog , paper-biji
- SDNE模型(Structure Deep Network Embedding) , paper链接 , paper-biji
- Semi-Supervised Classification with Graph Convolutional Networks , paper链接 , code , blog , paper-biji
- Fast Network Embedding Enhancement via High Order Proximity Approximation , paper链接 , paper-biji
- CANE: Context-Aware Network Embedding for Relation Modeling , paper链接 , paper-biji
- Deep Neural Networks for Learning Graph Representations , paper链接 , paper-biji
- Geometric deep learning: going beyond euclidean data , paper链接 , paper-biji
NLP 相关文本生成系列
- Generative Adversarial Nets 普通对抗网络 Ian Goodfellow∗
- GANs for Sequence of Discrete Elements with the Gumbel-softmax Distribution
- Generating Text via Adversarial Training-NIPS2016
- Adversarial Feature Matching for Text Generation
- SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
- MaskGAN: Better Text Generation via Filling in the-ICLR 2018
- Long Text Generation via Adversarial Training with Leaked Information-AAAI 2018
NLP 相关 vector 系列
[github] word2vec
- Distributed Representations of Words and Phrases and their Compositionality , paper链接 , paper-biji
- word2vec Parameter Learning Explained , paper链接 , paper-biji
- A Neural Probabilistic Language Model , paper链接 , paper-biji
- Efficient Estimation of Word Representations in Vector Space , paper链接 , paper-biji
- 秒懂词向量Word2vec的本质 , zhihu
- word2vec 笔记 , csdn
- Bag of Tricks for Efficient Text Classification(fasttext)
- Distributed Representations of Sentences and Documents , paper链接 , paper-biji
- Topic2Vec: Learing Distributed Representations of Topics , paper链接 , paper-biji
- A Hierarchical Neural Autoencoder for Paragraphs and Documents , paper链接 , paper-biji
- Convolutional Neural Networks for Sentence Classification , paper链接 , paper-biji
- E-commerce in Your Inbox: Product Recommendations at Scale , paper链接 , paper-biji
- Supervised Learning of Universal Sentence Representations from Natural Language Inference Data , paper链接 , paper-biji
- Deep contextualized word representations(ELMo) , paper链接 , blog
- Improving Language Understanding by Generative Pre-Training(GPT) , [https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf) , paper-biji
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding(BERT) , paper链接 , code paper-biji
- Language Models are Unsupervised Multitask Learners(GPT-2) , paper链接 , code , blog , paper-biji
2vec系列
- word2vec
- sentence2vec, paragraph2vec, doc2vec
- tweet2vec
- tweet2vec
- author2vec
- item2vec
- lda2vec
- illustration2vec
- tag2vec
- category2vec
- topic2vec
- image2vec
- app2vec
- prod2vec
- meta-prod2vec
- sense2vec
- node2vec
- subgraph2vec
- wordnet2vec
- doc2sent2vec
- context2vec
- rdf2vec
- hash2vec
- query2vec
- gov2vec
- novel2vec
- emoji2vec
- video2vec
- video2vec
- sen2vec
- content2vec
- cat2vec
- diet2vec
- mention2vec
- POI2vec
- wang2vec
- dna2vec
- pin2vec
- paper2vec
- struc2vec
- med2vec
- net2vec
- sub2vec
- metapath2vec
- concept2vec
- graph2vec
- doctag2vec
- skill2vec
- style2vec
- ngram2vec
- hin2vec
- edge2vec
- edge2vec
- edge2vec
- place2vec
- hyperedge2vec
- feat2vec
- mvn2vec
- onto2vec
- mol2vec
- cw2vec
- metaGraph2vec
- speech2vec
- code2vec
- cw2vec
- sub2vec
- dict2vec
- spam2vec
- DyLink2Vec
- gat2vec
- sac2vec
- tile2vec
- hyperdoc2vec
- inf2vec
- Sound-Word2Vec
- drive2vec
- sent2vec
- resource2vec
- event2vec
- role2vec
- people2vec
- dyn2vec
- Behavior2vec
- apk2vec
- [record2vec]((ICDM](2018))
- act2vec,trace2vec,log2vec,model2vec
- table2vec
- dyngraph2vec
- gene2vec
- BB2vec
- patient2vec
- prob2vec

这篇博客汇总了推荐系统中常见的模型,包括协同过滤、GBDT、矩阵分解、因子分解机、深度学习模型如DeepFM、NFM、AFM等。还介绍了网络嵌入、NLP相关技术和深度学习的最新进展,如Attention机制和Graph Embedding。
1815

被折叠的 条评论
为什么被折叠?



