Paper_list

这篇博客汇总了推荐系统中常见的模型,包括协同过滤、GBDT、矩阵分解、因子分解机、深度学习模型如DeepFM、NFM、AFM等。还介绍了网络嵌入、NLP相关技术和深度学习的最新进展,如Attention机制和Graph Embedding。

推荐相关

CF(Collaborative Filtering)
  1. Item-Based Collaborative Filtering Recommendation Algorithms , paper链接 , paper-biji
  2. Collaborative Metric Learning , paper链接 , paper-biji
  3. Item2Vec: Neural Item Embedding for Collaborative Filtering , paper链接 , paper-biji
  4. 少数人的智慧(The Wisdom of the Few) , paper链接, zhihu
  5. Neural Collaborative Filter , paper链接 , code , blog , paper-biji
  6. Outer Product-based Neural Collaborative Filtering , paper链接 , code , blog , paper-biji
  7. ALS , blog
GBDT及各种变形
  1. greedy function approximation: a gradient boosting machine , paper链接 , code , blog , paper-biji
  2. A Regression Framework for Learning Ranking Functions Using Relative Relevance Judgments , paper链接 , code , blog , paper-biji
  3. From RankNet to LambdaRank to LambdaMART: An overview , paper链接 , code , blog , paper-biji
  4. GBDT+LR , paper链接 , xgboost , lightgbm , paper-biji
MF(Matrix Factorization)
  1. nimfa
  2. MF
  3. Matrix Factorization techniques for Recommender Systems
  4. Predicting movie ratings and recommender systems
FM = LR + MF
  1. Factorization Machines ,paper链接 , libfm , ppyFM , FM
FFM
  1. Field-aware Factorization Machines for CTR Prediction , paper链接 ,FFM ,xlearn , libffm ,
    深入FFM原理与实践_美团 , 3 Idiots’ Approach for Display Advertising Challenge
MLR(多元线性回归模型)= Embedding + MF + LR
  1. Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction , paper链接, blog
FNN = FM + MLP

Deep Learning over Multi-Field Categorical Data: A Case Study on User Response Prediction, paper链接 , code , blog , paper-biji

PNN = FNN + product layer

Product-based Neural Networks for User Response Prediction , paper链接 ,
code1-torch ,
code2-tf ,
code3-tf ,
code4-tf , blog , paper-biji ()

DeepFM = FM + Embedding + MLP

DeepFM: A Factorization-Machine based Neural Network for CTR Prediction, paper链接 ,
code1-tf ,
code2-tf ,
code3-tf ,
code4-torch ,
code5-tf ,
code6-tf ,
code7-tf , paper-biji

NFM(Neural FM) = FM + Embedding + MLP + Bi-Interaction Pooling

Neural Factorization Machines for Sparse Predictive Analytics, paper链接 , code, code , blog , paper-biji

AFM(Attentional FM)= LR + Embedding + MLP + Attention

Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks, paper链接 ,
code1-tf ,
code2-torch ,
code3 ,
code4-tf , blog , paper-biji

WDL(Wide & Deep)= LR + Embedding + MLP

【github】 wide&deep, ichuang, tensorflow
【github】wide&deep, jrzaurin, keras
【github】wide&deep, jorahn, keras
【github】wide&deep, zhougr1993, tensorflow
【github】wide&deep, lambdaji, tensorflow
【API】wide&deep, tensorflow, tf-API
【Paper】Wide & Deep Learning for Recommender Systems

, paper链接 , code , blog , paper-biji

YouTube Recommendation DNN

Deep Neural Networks for YouTube Recommendations paper链接 , code , blog , paper-biji

DIN(Deep Interest Network)= Embedding + MLP + Attention

Deep Interest Network for Click-Through Rate Prediction (阿里提出)
paper链接 , code , blog , paper-biji

MIND

Multi-Interest Network with Dynamic Routing for Recommendation at Tmall(阿里提出)
paper链接
paper-biji

DeepCTR = CNN + Embedding + MLP

【Paper】Deep CTR Prediction in Display Advertising

DCN (Deep & Cross Network) = Embedding + ResNet + LR
  1. Deep & Cross Network for Ad Click Predictions paper链接 , code , blog , paper-biji
  2. Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features paper链接 , code , blog , paper-biji
Deep Embedding Forest = Embedding + Forest
  1. Deep Embedding Forest: Forest-based Serving with Deep Embedding Features , paper链接
  2. Deep Forest: Towards An Alternative to Deep Neural Networks , paper链接 code , blog , paper-biji
xDeepFM

【Paper】https://arxiv.org/abs/1803.05170
, paper链接 , code , blog , paper-biji

其他

【Paper】https://www.ijcai.org/proceedings/2018/0277.pdf

强化学习在推荐系统中的应用

DRN

【Paper】DRN: A Deep Reinforcement Learning Framework for News Recommendation

【Paper】Deep Reinforcement Learning for Page-wise Recommendations

Multi-Task Learning
An Overview of Multi-Task Learning in Deep Neural Networks∗

SEMAX: Multi-Task Learning for Improving Recommendations

Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics

Multi-task Learning of Pairwise Sequence Classification Tasks Over Disparate Label Spaces

Improving Entity Recommendation with Search Log and Multi-Task Learning

Perceive Your Users in Depth: Learning Universal User Representations from Multiple E-commerce Tasks

Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts

多样性
Tagging like Humans: Diverse and Distinct Image Annotation (行列式点过程)

多目标

孪生网络
【ICML-2015 workshop】Siamese Neural Networks for One-shot Image Recognition

【NIPS-2005】Learning a Similarity Metric Discriminatively, with Application to Face Verificatio

【CVPR-2015】FaceNet: A Unified Embedding for Face Recognition and Clustering

Graph Embedding
【2017】graph2vec: Learning Distributed Representations of Graphs

【Paper】Graph Convolutional Neural Networks for Web-Scale Recommender Systems

【Paper】Graph Convolutional Matrix Completion

《Graph Neural Networks: A Review of Methods and Applications》

《A Comprehensive Survey on Graph Neural Networks》

深度学习

  1. Attention is all your need , paper链接 , paper-biji
  2. Variation Autoencoder Based Network Representation Learning for Classification , paper链接 , paper-biji

Network Embedding/Graph Embedding

  1. DeepWalk: Online Learning of Social Representations , paper链接 , code , zhihu , paper-biji
  2. node2vec: Scalable Feature Learning for Networks , paper链接 , code , blog , paper-biji
  3. Line: Large-scale information network embedding , paper链接 , code , blog , paper-biji
  4. Graph embedding techniques, applications, and performance: A survey , paper链接 , code , blog , paper-biji
  5. SDNE模型(Structure Deep Network Embedding) , paper链接 , paper-biji
  6. Semi-Supervised Classification with Graph Convolutional Networks , paper链接 , code , blog , paper-biji
  7. Fast Network Embedding Enhancement via High Order Proximity Approximation , paper链接 , paper-biji
  8. CANE: Context-Aware Network Embedding for Relation Modeling , paper链接 , paper-biji
  9. Deep Neural Networks for Learning Graph Representations , paper链接 , paper-biji
  10. Geometric deep learning: going beyond euclidean data , paper链接 , paper-biji

NLP 相关文本生成系列

  1. Generative Adversarial Nets 普通对抗网络 Ian Goodfellow∗
  2. GANs for Sequence of Discrete Elements with the Gumbel-softmax Distribution
  3. Generating Text via Adversarial Training-NIPS2016
  4. Adversarial Feature Matching for Text Generation
  5. SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
  6. MaskGAN: Better Text Generation via Filling in the-ICLR 2018
  7. Long Text Generation via Adversarial Training with Leaked Information-AAAI 2018

NLP 相关 vector 系列

[github] word2vec

  1. Distributed Representations of Words and Phrases and their Compositionality , paper链接 , paper-biji
  2. word2vec Parameter Learning Explained , paper链接 , paper-biji
  3. A Neural Probabilistic Language Model , paper链接 , paper-biji
  4. Efficient Estimation of Word Representations in Vector Space , paper链接 , paper-biji
  5. 秒懂词向量Word2vec的本质 , zhihu
  6. word2vec 笔记 , csdn
  7. Bag of Tricks for Efficient Text Classification(fasttext)
  8. Distributed Representations of Sentences and Documents , paper链接 , paper-biji
  9. Topic2Vec: Learing Distributed Representations of Topics , paper链接 , paper-biji
  10. A Hierarchical Neural Autoencoder for Paragraphs and Documents , paper链接 , paper-biji
  11. Convolutional Neural Networks for Sentence Classification , paper链接 , paper-biji
  12. E-commerce in Your Inbox: Product Recommendations at Scale , paper链接 , paper-biji
  13. Supervised Learning of Universal Sentence Representations from Natural Language Inference Data , paper链接 , paper-biji
  14. Deep contextualized word representations(ELMo) , paper链接 , blog
  15. Improving Language Understanding by Generative Pre-Training(GPT) , [https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf) , paper-biji
  16. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding(BERT) , paper链接 , code paper-biji
  17. Language Models are Unsupervised Multitask Learners(GPT-2) , paper链接 , code , blog , paper-biji

2vec系列

  1. word2vec
  2. sentence2vec, paragraph2vec, doc2vec
  3. tweet2vec
  4. tweet2vec
  5. author2vec
  6. item2vec
  7. lda2vec
  8. illustration2vec
  9. tag2vec
  10. category2vec
  11. topic2vec
  12. image2vec
  13. app2vec
  14. prod2vec
  15. meta-prod2vec
  16. sense2vec
  17. node2vec
  18. subgraph2vec
  19. wordnet2vec
  20. doc2sent2vec
  21. context2vec
  22. rdf2vec
  23. hash2vec
  24. query2vec
  25. gov2vec
  26. novel2vec
  27. emoji2vec
  28. video2vec
  29. video2vec
  30. sen2vec
  31. content2vec
  32. cat2vec
  33. diet2vec
  34. mention2vec
  35. POI2vec
  36. wang2vec
  37. dna2vec
  38. pin2vec
  39. paper2vec
  40. struc2vec
  41. med2vec
  42. net2vec
  43. sub2vec
  44. metapath2vec
  45. concept2vec
  46. graph2vec
  47. doctag2vec
  48. skill2vec
  49. style2vec
  50. ngram2vec
  51. hin2vec
  52. edge2vec
  53. edge2vec
  54. edge2vec
  55. place2vec
  56. hyperedge2vec
  57. feat2vec
  58. mvn2vec
  59. onto2vec
  60. mol2vec
  61. cw2vec
  62. metaGraph2vec
  63. speech2vec
  64. code2vec
  65. cw2vec
  66. sub2vec
  67. dict2vec
  68. spam2vec
  69. DyLink2Vec
  70. gat2vec
  71. sac2vec
  72. tile2vec
  73. hyperdoc2vec
  74. inf2vec
  75. Sound-Word2Vec
  76. drive2vec
  77. sent2vec
  78. resource2vec
  79. event2vec
  80. role2vec
  81. people2vec
  82. dyn2vec
  83. Behavior2vec
  84. apk2vec
  85. [record2vec]((ICDM](2018))
  86. act2vec,trace2vec,log2vec,model2vec
  87. table2vec
  88. dyngraph2vec
  89. gene2vec
  90. BB2vec
  91. patient2vec
  92. prob2vec
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值