我们可以把 MySQL 拆解成几个零件,如下图所
示
大致上来说,MySQL 可以分为 Server层和 存储引擎层。
Server 层包括连接器、查询缓存、分析器、优化器、执行器,包括大多数 MySQL 中的核心功能,所有跨存储引擎的功能也在这一层实现,包括 存储过程、触发器、视图等。存储引擎层包括 MySQL 常见的存储引擎,包括 MyISAM、InnoDB 和 Memory 等,最常用的是 InnoDB,也是现在 MySQL 的默认存储引擎。存储引擎也可以在创建表的时候手动指定,比如下面CREATE TABLE t (i INT) ENGINE = ;然后我们就可以探讨 MySQL 的执行过程了
连接器
首先需要在 MySQL 客户端登陆才能使用,所以需要一个连接器来连接用户和 MySQL 数据库,我们一般是使用mysql -u 用户名 -p 密码来进行 MySQL 登陆,和服务端建立连接。在完成 TCP 握手 后,连接器会根据你输入的用户名和密码验证你的登录身份。如果用户名或者密码错误,MySQL 就会提示 Access denied for user,来结束执行。如果登录成功后,MySQL 会根据权限表中的记录来判定你的权限。
查询缓存
连接完成后,你就可以执行 SQL 语句了,这行逻辑就会来到第二步:查询缓存。MySQL 在得到一个执行请求后,会首先去 查询缓存 中查找,是否执行过这条 SQL 语句,之前执行过的语句以及结果会以 key-value 对的形式,被直接放在内存中。key 是查询语句,value 是查询的结果。如果通过 key 能够查找到这条 SQL 语句,就直接返回 SQL 的执行结果。如果语句不在查询缓存中,就会继续后面的执行阶段。执行完成后,执行结果就会被放入查询缓存中。可以看到,如果查询命中缓存,MySQL 不需要执行后面的复杂操作,就可以直接返回结果,效率会很高。
但是查询缓存不建议使用
为什么呢?因为只要在 MySQL 中对某一张表执行了更新操作,那么所有的查询缓存就会失效,对于更新频繁的数据库来说,查询缓存的命中率很低。
分析器
如果没有命中查询,就开始执行真正的 SQL 语句。首先,MySQL 会根据你写的 SQL 语句进行解析,分析器会先做 词法分析,你写的 SQL 就是由多个字符串和空格组成的一条 SQL 语句,MySQL 需要识别出里面的字符串是什么,代表什么。然后进行 语法分析,根据词法分析的结果, 语法分析器会根据语法规则,判断你输入的这个 SQL 语句是否满足 MySQL 语法。如果 SQL 语句不正确,就会提示 You have an error in your SQL syntax
优化器
经过分析器的词法分析和语法分析后,你这条 SQL 就合法了,MySQL 就知道你要做什么了。但是在执行前,还需要进行优化器的处理,优化器会判断你使用了哪种索引,使用了何种连接,优化器的作用就是确定效率最高的执行方案。
执行器
MySQL 通过分析器知道了你的 SQL 语句是否合法,你想要做什么操作,通过优化器知道了该怎么做效率最高,然后就进入了执行阶段,开始执行这条 SQL 语句在执行阶段,MySQL 首先会判断你有没有执行这条语句的权限,没有权限的话,就会返回没有权限的错误。如果有权限,就打开表继续执行。打开表的时候,执行器就会根据表的引擎定义,去使用这个引擎提供的接口。对于有索引的表,执行的逻辑也差不多。至此,MySQL 对于一条语句的执行过程也就完成了。
索引是存储在一张表中特定列上的数据结构,索引是在列上创建的。并且,索引是一种数据结构。
全局索引(FULLTEXT):全局索引,目前只有 MyISAM 引擎支持全局索引,它的出现是为了解决针对文本的模糊查询效率较低的问题。
哈希索引(HASH):哈希索引是 MySQL 中用到的唯一 key-value 键值对的数据结构,很适合作为索引。HASH 索引具有一次定位的好处,不需要像树那样逐个节点查找,但是这种查找适合应用于查找单个键的情况,对于范围查找,HASH 索引的性能就会很低。B-Tree 索引:B 就是 Balance 的意思,BTree 是一种平衡树,它有很多变种,最常见的就是 B+ Tree,它被 MySQL 广泛使用。R-Tree 索引:R-Tree 在 MySQL 很少使用,仅支持 geometry 数据类型,支持该类型的存储引擎只有MyISAM、BDb、InnoDb、NDb、Archive几种,相对于 B-Tree 来说,R-Tree 的优势在于范围查找。
什么是 内连接、外连接、交叉连接、笛卡尔积
连接的方式主要有三种:外连接、内链接、交叉连接
外连接(OUTER JOIN):外连接分为三种,分别是左外连接(LEFT OUTER JOIN 或 LEFT JOIN) 、右外连接(RIGHT OUTER JOIN 或 RIGHT JOIN) 、全外连接(FULL OUTER JOIN 或 FULL JOIN)左外连接:又称为左连接,这种连接方式会显示左表不符合条件的数据行,右边不符合条件的数据行直接显示 NULL
右外连接:也被称为右连接,他与左连接相对,这种连接方式会显示右表不 符合条件的数据行,左表不符合条件的数据行直接显示 NULL
内连接(INNER JOIN):结合两个表中相同的字段,返回关联字段相符的记录。
笛卡尔积(Cartesian product):我在上面提到了笛卡尔积,为了方便,下面再列出来一下。
“现在我们有两个集合 A = {0,1} , B = {2,3,4}那么,集合 A * B 得到的结果就是A * B = {(0,2)、(1,2)、(0,3)、(1,3)、(0,4)、(1,4)};B * A = {(2,0)、{2,1}、{3,0}、{3,1}、{4,0}、(4,1)};上面 A * B 和 B * A 的结果就可以称为两个集合相乘的 笛卡尔积我们可以得出结论,A 集合和 B 集合相乘,包含了集合 A 中的元素和集合 B 中元素之和,也就是 A 元素的个数 * B 元素的个数
全连接:全连接也就是 full join,MySQL 中不支持全连接,但是可以使用其他连接查询来模拟全连接,可以使用 UNION 和 UNION ALL 进行模拟。例如
谈谈 SQL 优化的经验
查询语句无论是使用哪种判断条件 等于、小于、大于, WHERE 左侧的条件查询字段不要使用函数或者表达式
使用 EXPLAIN 命令优化你的 SELECT 查询,对于复杂、效率低的 sql 语句,我们通常是使用 explain sql 来分析这条 sql 语句,这样方便我们分析,进行优化。当你的 SELECT 查询语句只需要使用一条记录时,要使用 LIMIT 1不要直接使用 SELECT *,而应该使用具体需要查询的表字段,因为使用 EXPLAIN 进行分析时,SELECT * 使用的是全表扫描,也就是 type = all。为每一张表设置一个 ID 属性避免在 WHERE 字句中对字段进行 NULL 判断避免在 WHERE 中使用 != 或 <> 操作符使用 BETWEEN AND 替代 IN为搜索字段创建索引选择正确的存储引擎,InnoDB 、MyISAM 、MEMORY 等使用 LIKE %abc% 不会走索引,而使用 LIKE abc% 会走索引对于枚举类型的字段(即有固定罗列值的字段),建议使用ENUM而不是VARCHAR,如性别、星期、类型、类别等拆分大的 DELETE 或 INSERT 语句选择合适的字段类型,选择标准是 尽可能小、尽可能定长、尽可能使用整数。字段设计尽可能使用 NOT NULL进行水平切割或者垂直分割“水平分割:通过建立结构相同的几张表分别存储数据垂直分割:将经常一起使用的字段放在一个单独的表中,分割后的表记录之间是一一对应关系。