一、pytorch打印网络结构
model = TransformerModel(ntokens, emsize, nhead, nhid, nlayers, dropout)
print(model)
TransformerModel(
(pos_encoder): PositionalEncoding(
(dropout): Dropout(p=0.2, inplace=False)
)
(transformer_encoder): TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): Linear(in_features=200, out_features=200, bias=True)
)
(linear1): Linear(in_features=200, out_features=200, bias=True)
(dropout): Dropout(p=0.2, inplace=False)
(linear2): Linear(in_features=200, out_features=200, bias=True)
(norm1): LayerNorm((200,), eps=1e-05, elementwise_affine=True)
(norm2): LayerNorm((200,), eps