Description
Let’s call any (contiguous) subarray B (of A) a mountain if the following properties hold:
- B.length >= 3
- There exists some 0 < i < B.length - 1 such that B[0] < B[1] < … B[i-1] < B[i] > B[i+1] > … > B[B.length - 1]
(Note that B could be any subarray of A, including the entire array A.)
Given an array A of integers, return the length of the longest mountain.
Return 0 if there is no mountain.
Example 1:
Input: [2,1,4,7,3,2,5]
Output: 5
Explanation: The largest mountain is [1,4,7,3,2] which has length 5.
Example 2:
Input: [2,2,2]
Output: 0
Explanation: There is no mountain.
Note:
- 0 <= A.length <= 10000
- 0 <= A[i] <= 10000
Follow up:
- Can you solve it using only one pass?
- Can you solve it in O(1) space?
分析
题目的意思是:找出一个数组中的mountain array。
- 大致思路是把每一个位置当成起点,然后先找up上升趋势的值,然后找下降趋势的值,这样就能找到一个mountain array,我们更新res来找到所有mountain array中最长的array的长度。
代码
class Solution {
public:
int longestMountain(vector<int>& A) {
int n=A.size();
int res=0;
int base=0;
while(base<n){
int end=base;
if(end+1<n&&A[end]<A[end+1]){
while(end+1<n&&A[end]<A[end+1]) end++; //up
if(end+1<n&&A[end]>A[end+1]){
while(end+1<n&&A[end]>A[end+1]) end++; //down
res=max(res,end-base+1);
}
}
base=max(base+1,end);
}
return res;
}
};