有文件A:,B:
,希望通过A,B生成C:
就是笛卡尔积操作。
一,当数据在numpy数组中,数据为:
A=['a','b','c','d']
B=['1','2','3','4']
其实方法一的思想很简单粗暴:A,B元素存储在list中,将A中每个元素复制len(B)次,然后将之与B进行行合并;得到的结果再与result列合并。最后输出result
代码如下:
def dikaerji(A,B):
lenB = len(B)
# print(lenB)
dika_num = pd.DataFrame(columns=['alph','num'])
for a in A:
curA = np.array([a]*lenB)
curA.shape = (lenB,1)
# 必须要先转换成np的aray形式,不然会报“没有shape”的错
curB = np.array(B)
curB.shape = (lenB,1)
join_h = np.hstack((curA,curB))
dika_num = dika_num.append(pd.DataFrame(join_h,columns=['alph','num']),ignore_index=True)
return dika_num
结果为:
方法二,若数据是在两个DataFrame中存储着:
first = DataFrame([['a','b','c','d']],columns=['first'])
second = DataFrame([1,2,3,4],columns=['second'])
思想:循环遍历两层for循环,使用iterrows()函数来获取行信息,代码如下:
def getMergeAB(A,B):
newDf = DataFrame(columns=['alpha','nums'])
for _,A_row in A.iterrows():
for _,B_row in B.iterrows():
AData=A_row['first']
BData=B_row['second']
row = DataFrame([dict(alpha=AData,nums=BData)])
newDf = newDf.append(row,ignore_index=True)
return newDf
测试:
first = DataFrame([['a','x'],['b','y'],['c','z'],['d','w']],columns=['first','x_first'])
second = DataFrame([1,2,3,4],columns=['second'])
da = getMergeAB(first,second)
结果:
说明:A.iterrows()函数返回一个(index, Series) pairs,存储的是这一行的下标值和这一行所有的值