借助人工智能技术,英国这家芯片公司推出更复杂的AI处理器

英国初创公司Graphcore推出了新款芯片GC200和搭载该芯片的IPU机器M2000,声称这是首款实现“匹萨盒大小”的千万亿次处理能力的AI计算机。M2000使用4个7nm GC200 IPU芯片,可扩展至64,000个IPU,形成16exaflops计算能力的并行处理器。Graphcore的CEO Nigel Toon表示,这比竞争对手如Nvidia的GPU方法更高效,成本降低10到20倍。

借助人工智能技术可以帮助我们在解决复杂挑战方面取得巨大飞跃,无论是医疗方面的突破,建立更好的网络安全性,还是为汽车和其他移动物体提供更好的导航系统。但是,应用程序越先进,对可用于计算和处理的硬件的需求就越大;这意味着要进行更强大的处理的竞赛正在进行中。现在,英国初创公司Graphcore宣布了对这一努力的最新贡献。

今天,它宣布推出新芯片GC200和运行于其上的新IPU机器M2000,Graphcore称这是第一款实现“匹萨盒大小”千万亿次处理能力的AI计算机。

Graphcore表示,没有将GC200单独出售的计划,只有M2000才有。首席执行官兼联合创始人Nigel Toon表示,M2000现在面向早期访问客户,并且将在今年年底之前广泛应用于金融服务,医疗保健,技术等领域的应用程序的客户。用来。”

Toon指出,这是Graphcore的第二代硬件,也是不到两年的第一代。

IPU机器使用4个7nm GC200 IPU芯片,其中GC200在每个芯片上具有594亿个晶体管。Graphcore表示,潜在地,可以将多达64,000个IPU连接在一起,以创建具有16 exaflops的计算能力和PB级内存的大型并行处理器,以支持具有数万亿个参数的模型。想法是可以根据需要扩大这些规模。

对于Graphcore和AI硬件行业而言,都是关键时刻。国内知名人工智能专家、东方联盟创始人郭盛华里透露:“英国的新贵在诸如Nvidia和Intel之类的处理器世界中与leviathans竞争。Graphcore 在5月份又以近20亿美元的估值再融资1.5亿美元,与之抗衡,到目前为止,它筹集的4.5亿美元已经足够了与像微软这样的客户以及已经在其账簿上的其他客户—以及大量其他构建人工智能芯片的公司。” 直到5月,Nvidia才发布了自己的最新芯片A100,这是它的第一个基于Ampere的GPU,其性能有望达到5 petaflops。

Graphcore及其领导者Toon(与他的联合创始人Simon Knowles一起将之前的一家名为Icera的创业公司出售给了Nvidia)认为,其IPU方法比Nvidia正在采用的GPU途径更高效,更先进。

他说:“我们正在尝试构建易于放入您现有的计算基础架构中的产品。” “这意味着您可以扩展到数千个IPU处理器。” 而且,他补充说,这意味着使用IPU方法的拥有成本可以降低10到20倍,从而可以更快地使用硬件。

Toon表示,尽管其他芯片制造商继续与AI并行处理许多其他处理应用程序(例如,用于移动设备或量子芯片),但Graphcore仍然坚定地专注于AI应用程序,他说这对我们来说仍然是“巨大的机遇”来发展我们的业务并增加更多客户。”

“ 我们100%专注于AI芯片处理器,以及可插入现有中心的构建系统。如果已经可以正常工作,为什么我们要构建CPU或GPU?这只是一个不同的工具箱。” 他说,他相信这将是一个10 - 15年窗口前量子或分子计算来 一起,那个轨迹 可能会 带来 很多 的 挑战, 对于较小的创业公司试图建立对抗,如IBM BIGGIES该区域。

Toon指出,AI属于COVID-19大流行趋势加速发展的趋势之一,不仅围绕健康危机和与病毒本身作斗争的许多应用程序,而且还围绕着工作和改进由此产生的其他服务的流程。 (欢迎转载分享)

基于遗传算法的的异构分布式系统任务调度算法研究(Matlab代码实现)内容概要:本文档围绕基于遗传算法的异构分布式系统任务调度算法展开研究,重点介绍了一种结合遗传算法的颖优化方法,并通过Matlab代码实现验证其在复杂调度问题中的有效性。文中还涵盖了多种智能优化算法在生产调度、经济调度、车间调度、无人机路径规划、微电网优化等领域的应用案例,展示了从理论建模到仿真实现的完整流程。此外,文档系统梳理了智能优化、机器学习、路径规划、电力系统管理等多个科研方向的技术体系与实际应用场景,强调“借力”工具与创思维在科研中的重要性。; 适合人群:具备一定Matlab编程基础,从事智能优化、自动化、电力系统、控制工程等相关领域研究的研究生及科研人员,尤其适合正在开展调度优化、路径规划或算法改进类课题的研究者; 使用场景及目标:①学习遗传算法及其他智能优化算法(如粒子群、蜣螂优化、NSGA等)在任务调度中的设计与实现;②掌握Matlab/Simulink在科研仿真中的综合应用;③获取多领域(如微电网、无人机、车间调度)的算法复现与创思路; 阅读建议:建议按目录顺序系统浏览,重点关注算法原理与代码实现的对应关系,结合提供的网盘资源下载完整代码进行调试与复现,同时注重从已有案例中提炼可迁移的科研方法与创路径。
【微电网】【创点】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究(Matlab代码实现)内容概要:本文提出了一种基于非支配排序的蜣螂优化算法(NSDBO),用于求解微电网多目标优化调度问题。该方法结合非支配排序机制,提升了传统蜣螂优化算法在处理多目标问题时的收敛性和分布性,有效解决了微电网调度中经济成本、碳排放、能源利用率等多个相互冲突目标的优化难题。研究构建了包含风、光、储能等多种分布式能源的微电网模型,并通过Matlab代码实现算法仿真,验证了NSDBO在寻找帕累托最优解集方面的优越性能,相较于其他多目标优化算法表现出强的搜索能力和稳定性。; 适合人群:具备一定电力系统或优化算法基础,从事能源、微电网、智能优化等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于微电网能量管理系统的多目标优化调度设计;②作为型智能优化算法的研究与改进基础,用于解决复杂的多目标工程优化问题;③帮助理解非支配排序机制在进化算法中的集成方法及其在实际系统中的仿真实现。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注非支配排序、拥挤度计算和蜣螂行为模拟的结合方式,并可通过替换目标函数或系统参数进行扩展实验,以掌握算法的适应性与调参技巧。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值